

1 Reuben D. Nathan, Esq. (SBN 208436)
2 **NATHAN & ASSOCIATES, APC**
3 2901 W. Coast Hwy., Suite 200
4 Newport Beach, CA 92663
5 Office: (949) 270-2798
Email: rathan@nathanlawpractice.com

6 Ross Cornell, Esq. (SBN 210413)
7 **LAW OFFICES OF ROSS CORNELL, APC**
8 40729 Village Dr., Suite 8 - 1989
9 Big Bear Lake, CA 92315
10 Office: (562) 612-1708
Email: rc@rosscornelllaw.com

11 Attorneys for Plaintiff, JEFFREY SCRUGGS

12
13 **UNITED STATES DISTRICT COURT**
14 **CENTRAL DISTRICT OF CALIFORNIA**

15 JEFFREY SCRUGGS, on behalf of
16 himself and all similarly situated
17 persons,

Case No:

CLASS ACTION COMPLAINT

18 Plaintiff,
19 v.
20 TICKETMASTER L.L.C., a Virginia
21 limited liability company,

- 1) Cal. Penal Code § 638.51
- 2) Cal. Constitution Art. I § 1
- 3) Cal. Bus. & Prof. Code § 17200, *et seq.*
- 4) Intrusion Upon Seclusion
- 5) Unjust Enrichment

22 Defendant.

1 Plaintiff JEFFREY SCRUGGS (“Plaintiff”) files this class action complaint on
 2 behalf of himself and all others similarly situated (the “Class Members”) against
 3 Defendant TICKETMASTER L.L.C., a Virginia limited liability company (“Defendant”
 4 or “TICKETMASTER”). Plaintiff brings this action based upon personal knowledge of
 5 the facts pertaining to himself, and on information and belief as to all others, by and
 6 through the investigation of undersigned counsel.

7 **I. NATURE OF THE ACTION**

8 1. This is a class action lawsuit brought on behalf of all California residents
 9 who have accessed and used www.ticketmaster.com the (“Website”), a website that
 10 Defendant provides for public access and use.

11 2. Defendant surreptitiously installs and operates tracking software on the
 12 Website without providing users with adequate notice or obtaining their informed
 13 consent. The software is intentionally deployed to accomplish Defendant’s commercial
 14 objectives, including identity resolution, targeted advertising, and the monetization of
 15 consumer data.

16 3. To achieve these goals, Defendant enables third-party technologies on its
 17 Website that function as unlawful pen registers and/or trap-and-trace devices or
 18 processes. These technologies automatically capture and transmit non-content dialing,
 19 routing, addressing, and signaling information including Internet Protocol (IP)
 20 addresses, page URLs, referrer headers, timestamps, session identifiers, and device or
 21 browser identifiers to third-party servers in real time during users’ interactions with the
 22 Website. Defendant deploys these technologies without judicial authorization and
 23 without obtaining Plaintiff’s or Class Members’ consent, in violation of the California
 24 Invasion of Privacy Act (“CIPA”), Cal. Penal Code § 638.51.

25 4. A pixel tracker, also known as a web beacon, is a tracking mechanism
 26 embedded in a website that monitors user interactions. It typically appears as a small,
 27 transparent 1x1 image or a lightweight JavaScript snippet that activates when a webpage
 28 is loaded, or a user performs a tracked action.

1 5. When triggered, the pixel causes the user's browser to transmit data to third-
2 party servers, including page-view events, page URLs, referrer headers, session-level
3 identifiers, network-level IP addressing information, browser and device characteristics,
4 and related navigation metadata.

5 6. When users visit the Website, Defendant causes tracking technologies to be
6 embedded in visitors' browsers. These include, but are not limited to, the following:

7 • Google Trackers (Analytics, Ads, Tag Manager, DoubleClick)
8 • Facebook Tracker
9 • TikTok Tracker
10 • Microsoft Bing Tracker

11 7. The third parties who operate the above-listed trackers use pieces of User
12 Information (defined below) collected via the Website, as described herein, for their own
13 independent purposes tied to broader advertising ecosystems, profiling, and data
14 monetization strategies, which go beyond Defendant's direct needs, for their own
15 financial gain. The above-listed trackers are referred to herein collectively as the
16 "Trackers."

17 8. The Trackers are operated by distinct third-party entities, including Google
18 LLC (as to Google Tag Manager, Google Analytics, and Google Ads/DoubleClick),
19 Meta Platforms, Inc. (as to the Facebook/Meta Pixel), TikTok Inc. (as to the TikTok
20 Tracker), and Microsoft Corporation (as to the Microsoft Bing/UET Tracker)
21 (collectively, the "Third Parties"). Defendant knowingly embeds and enables these
22 Trackers on the Website and configures them to execute automatically within users'
23 browsers upon page load and navigation. Through this configuration, Defendant causes
24 users' browsers to transmit non-content Dialing, Routing, Addressing, and Signaling
25 ("DRAS") information—including page URLs, referrer paths, timestamps, session- and
26 browser-level identifiers, device and browser characteristics, and related network
27 metadata—to servers controlled by the Third Parties. These transmissions occur as part
28 of advertising measurement, attribution, analytics, and identity-linked tracking

1 workflows and are not necessary to deliver or display the Website's core content or
2 functionality. Defendant's deployment of these Trackers is deliberate and coordinated,
3 reflecting affirmative design choices to permit third-party acquisition of DRAS
4 information during ordinary use of the Website.

5 9. On information and belief, Defendant's Website is further equipped with
6 additional third-party tracking and advertising technologies operated by Pinterest, Inc.
7 (as to the Pinterest Tag), Snap Inc. (as to the Snapchat Pixel), and Comscore, Inc., a
8 registered California data broker (as to Comscore measurement and analytics
9 technologies). These third-party technologies execute within users' browsers as part of
10 the Website's ordinary operation and are designed to collect, receive, and process non-
11 content Dialing, Routing, Addressing, and Signaling ("DRAS") information, including
12 IP addresses, page URLs, referrer paths, timestamps, session-level identifiers, and
13 device or browser characteristics. The information transmitted through these
14 technologies supports functions including advertising measurement, audience
15 segmentation, behavioral analytics, and cross-site tracking. Defendant deploys these
16 third-party technologies without prior user consent and without any court authorization.

17 10. Through the Trackers, the Third Parties collect a wide range of dialing,
18 routing, addressing, and signaling information from users' browsers and devices without
19 user consent. This information includes network-level IP addressing information; page
20 URLs and referrer headers; browser and device type; operating system and platform
21 information; language and locale settings; persistent and session-level identifiers
22 (including cookies and advertising or deduplication identifiers); and other navigation-
23 related metadata transmitted during page load and site interaction. The Trackers also
24 enable the derivation of approximate geographic location from IP addressing
25 information. Collectively, this data ("User Information") is used for behavioral profiling,
26 advertising measurement and attribution, personalization, audience segmentation, and
27 identity-linked tracking. Defendant deploys the Trackers and permits the collection and
28

1 commercial use of User Information in coordination with the Third Parties operating
2 them to support targeted marketing and advertising that monetizes the Website.

3 11. The third-party tracking code executed contemporaneously with each page
4 load and navigation event initiated by Plaintiff's browser. As the browser initiated each
5 HTTP request to retrieve Website content, embedded scripts automatically caused the
6 transmission of dialing, routing, addressing, and signaling information to remote third-
7 party endpoints during the page-load process itself, before the requested page finished
8 rendering and without any user interaction or authorization.

9 12. Because the Trackers record and transmit DRAS information, including
10 network-level IP addressing information, full page URLs, referrer headers, persistent
11 and session-level identifiers, and browser and device characteristics, they operate as
12 "pen registers" and/or "trap and trace devices" within the meaning of California Penal
13 Code §§ 638.50, 638.51. These technologies function as automated processes that
14 collect routing and addressing metadata for commercial purposes during page load and
15 navigation without the user's consent. Courts have recognized that the unauthorized use
16 of such tracking technologies to capture routing, addressing, and signaling information
17 falls within the scope of CIPA's prohibitions. *See, e.g., Greenley v. Kochava, Inc.*, 684
18 F. Supp. 3d 1024, 1050 (S.D. Cal. 2023).

19 13. The privacy intrusion alleged herein is heightened by the nature of the third-
20 party entities that operate the Trackers embedded on Defendant's Website and receive
21 Plaintiff's and Class Members' Dialing, Routing, Addressing, and Signaling ("DRAS")
22 information. As alleged above, Defendant causes users' browsers to transmit network-
23 level IP addressing information, persistent and session-level identifiers, page URLs,
24 referrer paths, timestamps, and related signaling metadata to third parties including
25 Google LLC, Meta Platforms, Inc., TikTok Inc., Microsoft Corporation (Bing),
26 Pinterest, Inc., Snap Inc., and Comscore, Inc. These entities operate tracking, analytics,
27 and advertising technologies that are designed to receive and process addressing and
28 signaling data generated by users' interactions with websites. By enabling and

1 configuring these Trackers, Defendant permits third parties to collect and process users'
2 routing and addressing metadata associated with navigation of Defendant's Website,
3 without Plaintiff's consent and without any court authorization, in violation of California
4 Penal Code § 638.51.

5 14. Plaintiff and the Class Members did not consent to the installation,
6 execution, embedding, or injection of the Trackers on their devices. The Website did not
7 display any consent banner, pop-up, cookie notice, or other authorization mechanism
8 requesting permission before deploying pen-register or trap-and-trace devices or
9 processes. Defendant did not obtain express prior consent for the collection and
10 transmission of dialing, routing, addressing, and signaling information for advertising,
11 analytics, or monetization purposes. General statements contained in a privacy policy
12 accessible only through non-blocking hyperlinks do not constitute express prior consent
13 under California law.

14 15. Generalized references herein to users, visitors and consumers expressly
15 include Plaintiff and the Class Members.

16 II. PARTIES

17 16. Plaintiff JEFFREY SCRUGGS is a California citizen residing in Solano
18 County, CA and has an intent to remain there. Plaintiff was in California when he visited
19 the Website, which occurred during the class period including but not limited to on
20 December 4, 2025. The allegations set forth herein are based on the Website as
21 configured when Plaintiff visited it.

22 17. TICKETMASTER, L.L.C. is a Virginia limited liability company that
23 owns, operates, and/or controls the Website, an online platform through which
24 TICKETMASTER offers goods and services to consumers.

25 18. TICKETMASTER is a technology company that operates an online
26 ticketing platform for live events, including concerts, sports, theater, and other
27 entertainment events. TICKETMASTER is organized under the laws of the State of
28 Virginia and maintains its principal executive offices in Beverly Hills, California.

1 Through its Website and related digital platforms, TICKETMASTER facilitates the
2 discovery, purchase, and distribution of event tickets to consumers in California.

3 19. TICKETMASTER conducts business nationwide and engages in product
4 development, marketing, and commercial operations centered on its digital ticketing
5 platform. TICKETMASTER's business activities include operating an online
6 marketplace through which users browse event offerings, review ticket availability and
7 pricing, and complete ticket purchases using web-based interfaces.

8 20. The Website, including the mobile site, serves as a core component of
9 TICKETMASTER's digital presence. The Website provides users with access to event
10 listings in California, ticket availability and pricing information for California events,
11 search and discovery tools for events in California, promotional content, and customer-
12 service resources, and functions as the primary consumer-facing platform through which
13 California users browse and purchase event tickets. The Website is integrated into
14 Ticketmaster's broader digital infrastructure and employs web-based technologies that
15 operate in connection with page loads, navigation, and user interaction.

16 III. **JURISDICTION AND VENUE**

17 21. This Court has subject matter jurisdiction over this action pursuant to the
18 Class Action Fairness Act of 2005, 28 U.S.C. § 1332(d)(2), because the total matter in
19 controversy exceeds \$5,000,000 and there are over 100 members of the proposed class.
20 Further, at least one member of the proposed class is a citizen of a State within the United
21 States and at least one defendant is the citizen or subject of a foreign state.

22 22. TICKETMASTER is subject to general personal jurisdiction in California
23 because it is headquartered in this State. Ticketmaster's principal place of business is
24 located at 9348 Civic Center Drive in Beverly Hills, rendering it "at home" in this forum
25 for purposes of general jurisdiction. As a result, Ticketmaster is subject to the
26 jurisdiction of California courts for all claims asserted in this action.

27 23. Venue is proper in the Central District of California pursuant to 28 U.S.C.
28 § 1391(b) because (1) Defendant maintains its primary place of business in this District;

1 (2) Defendant regularly transacts business in this District and is subject to personal
 2 jurisdiction here; and (3) a substantial part of the events or omissions giving rise to the
 3 claims occurred within this District.

4 **IV. GENERAL ALLEGATIONS**

5 **1. *The California Invasion of Privacy Act (CIPA)***

6 24. Enacted in 1967, the California Invasion of Privacy Act (CIPA) is a
 7 legislative measure designed to safeguard the privacy rights of California residents by
 8 prohibiting unauthorized wiretapping and eavesdropping on private communications.
 9 The California Legislature recognized the significant threat posed by emerging
 10 surveillance technologies, stating that “the development of new devices and techniques
 11 for the purpose of eavesdropping upon private communications … has created a serious
 12 threat to the free exercise of personal liberties and cannot be tolerated in a free and
 13 civilized society” (Cal. Penal Code § 630).

14 25. CIPA specifically prohibits the installation or use of “pen registers” and
 15 “trap and trace devices” without consent or a court order (Cal. Penal Code § 638.51(a)).

16 26. A “pen register” is defined as “a device or process that records or decodes
 17 dialing, routing, addressing, or signaling information transmitted by an instrument or
 18 facility from which a wire or electronic communication is transmitted,” excluding the
 19 contents of the communication (Cal. Penal Code § 638.50(b)).

20 27. Conversely, a “trap and trace device” is a device or process that captures
 21 “incoming electronic or other impulses that identify the originating number or other
 22 dialing, routing, addressing, or signaling information reasonably likely to identify the
 23 source of a wire or electronic communication,” again excluding the contents (Cal. Penal
 24 Code § 638.50(b)).

25 // /

26

27

28 // /

1 28. In practical terms, a pen register is a device or process that records outgoing
2 dialing information, while a trap and trace device is a device or process that records
3 incoming dialing information.

4 29. Historically, law enforcement has utilized these devices to monitor
5 telephone calls, with pen registers recording outgoing phone numbers dialed from a
6 specific line and trap and trace devices recording the phone numbers of incoming calls
7 to that line.

8 30. Although originally focused on landline telephone calls, CIPA's scope has
9 expanded to encompass various forms of communication, including cell phones and
10 online interactions. For instance, if a user sends an email, a pen register could record the
11 sender's email address, the recipient's email address, and the subject line, essentially
12 capturing the user's outgoing information.

13 31. Similarly, if the user receives an email, a trap and trace device could record
14 the sender's email address, the recipient's email address and the subject line, capturing
15 the incoming information.

16 32. Despite predating the Internet, CIPA has been interpreted by the California
17 Supreme Court to apply to new technologies where such application does not conflict
18 with the statutory scheme. *In re Google Inc.*, 2013 WL 5423918, at *21 (N.D. Cal. Sep.
19 26, 2013); *see also, e.g., Shah v. Fandom, Inc.*, 754 F. Supp. 3d 924, 930 (N.D. Cal. 2024)
20 (finding trackers similar to those at issue here were “pen registers” and noting
21 “California courts do not read California statutes as limiting themselves to the traditional
22 technologies or models in place at the time the statutes were enacted”); *Mirmalek v. Los
23 Angeles Times Communications LLC*, 2024 WL 5102709, at *3-4 (N.D. Cal. Dec. 12,
24 2024) (same); *Moody v. C2 Educ. Sys. Inc.* 742F. Supp. 3d 1072, 1076 (C.D. Cal. 2024)
25 (“Plaintiff’s allegations that the TikTok Software is embedded in the Website and
26 collects information from visitors plausibly fall within the scope of §§ 638.50 and
27 638.51.”); *Greenley*, *supra*, at 1050 (referencing CIPA’s “expansive language” when
28 finding software was a “pen register”); *Javier v. Assurance IQ, LLC*, 2022 WL 1744107,

1 at *1 (9th Cir. May 31, 2022) (“Though written in terms of wiretapping, [CIPA] Section
 2 631(a) applies to Internet communications. This interpretation aligns with the principle
 3 that CIPA should be construed to provide the greatest privacy protection when faced
 4 with multiple possible interpretations. *Matera v. Google Inc.*, 2016 WL 8200619, at *19
 5 (N.D. Cal. Aug. 12, 2016).

6 33. The conduct alleged herein constitutes a violation of a legally protected
 7 privacy interest that is both concrete and particularized. Invasions of privacy have long
 8 been actionable under common law. (*Patel v. Facebook*, 932 F.3d 1264, 1272 (9th Cir.
 9 2019); *Eichenberger v. ESPN, Inc.*, 876 F.3d 979, 983 (9th Cir. 2017).)

10 34. Both the legislative history and statutory language indicate that the
 11 California Legislature intended CIPA to protect core privacy rights. Courts have found
 12 that violations of CIPA give rise to concrete injuries sufficient to confer standing under
 13 Article III. (*See Campbell v. Facebook, Inc.*, 2020 WL 1023350; *In re Facebook Internet*
 14 *Tracking Litig.*, 956 F.3d 589 (9th Cir. 2020).)

15 35. Individuals may pursue legal action against violators of any CIPA
 16 provision, including Section 638.51, and are entitled to seek \$5,000 in statutory penalties
 17 per violation (Cal. Penal Code § 637.2(a)(1)).

18 **2. *The Trackers Are “Pen Registers” and/or “Trap and Trace Devices”***


19 36. When the Plaintiff and Class Members accessed the Website, their browsers
 20 initiated an HTTP or HTTPS request or “GET” request to Defendant’s web server, which
 21 hosts the content and functionality of the site. In response, the server transmitted an
 22 HTTP response containing the necessary resources, including HTML, cascading style
 23 sheets (CSS), JavaScript files, and image assets, used by the browser to render and
 24 display the webpage. These resources also included client-side scripts that initiate
 25 communication with third-party services for analytics, marketing, and tracking purposes.
 26 The server’s instructions include how to properly display the Website, *e.g.* what images
 27 to load, what text should appear, or what music should play.

28 ///

1 37. In addition, the server's instructions included client-side scripts that initiate
2 communication with third-party services for analytics, marketing, and tracking purposes.
3 The instructions cause the Trackers to be installed on a user's browser. The Trackers
4 then cause the browser to send identifying information—including the user's IP address
5 and User Information to the Third Parties. These Third Parties, through their Trackers,
6 also set a cookie on Website users' browsers, which sends a unique identifier to these
7 Third Parties that allows them to track users on the Website over multiple visits and
8 across the Internet.

9 38. A general diagram of this process is pictured at Figure 1, which explains
10 how Defendant's Website transmits instructions back to users' browsers in response to
11 HTTP requests.

Figure 1:

20 39. The server's response included third-party tracking scripts that were
21 executed by the Plaintiff's and Class Members' web browsers. These scripts, once
22 executed, initiate client-side functions that capture routing and behavioral metadata and
23 transmit this data, typically via HTTPS requests, to the servers of third-party tracking
24 vendors. These actions occur without visible indicators or user awareness. The
25 transmitted data, referred to as User Information, included identifiers such as IP
26 addresses, device characteristics, browser types, page navigation behavior, and unique
27 tracking cookies, all of which were used to profile users and facilitate targeted
28 advertising.

1 40. The Trackers operate by initiating HTTP or HTTPS requests using either
 2 the GET or POST method from the user's browser to external servers controlled by the
 3 Third Parties. These requests are triggered by user interactions with the Website and are
 4 used to transmit behavioral data and Device Metadata, including information such as
 5 page views, click events, session duration, and identifying browser characteristics.

6 41. Plaintiff and Class Members did not provide their prior consent to
 7 Defendant to install the Trackers on their browsers or use the Trackers. Nor did
 8 Defendant obtain a court order before installing or using the Trackers.

9 42. An IP address is a numerical identifier assigned to each device or network
 10 connected to the Internet, used to facilitate communication between systems. *See hiQ*
 11 *Labs, Inc. v. LinkedIn Corp.*, (9th Cir. 2019) 938 F.3d 985, 991 n.4. The most common
 12 format, known as IPv4, consists of four numbers separated by periods (e.g.,
 13 191.145.132.123). The traditional format of IP addresses is called IPv4, and it has a finite
 14 amount of combinations and thus is limited to approximately 4.3 billion addresses.
 15 Because this proved to be insufficient as the Internet grew, IPv6 was introduced. IPv6
 16 offers a vastly larger address space with 340 undecillion possible addresses. While IPv6
 17 adoption has been increasing, many networks still rely on IPv4.¹

18 43. Much like a telephone number, an IP address guides or routes an intentional
 19 communication signal (*i.e.*, a data packet) from one device to another. An IP address is
 20 essential for identifying a device on the internet or within a local network, facilitating
 21 smooth communication between devices. IP addresses can be used via external
 22 geolocation services to infer a user's general location, including state, city, approximate
 23 latitude and longitude, and in some cases, ZIP code.

24 44. Public IP addresses are globally unique identifiers assigned by Internet
 25 Service Providers (ISPs) that allow devices to communicate directly over the Internet.
 26

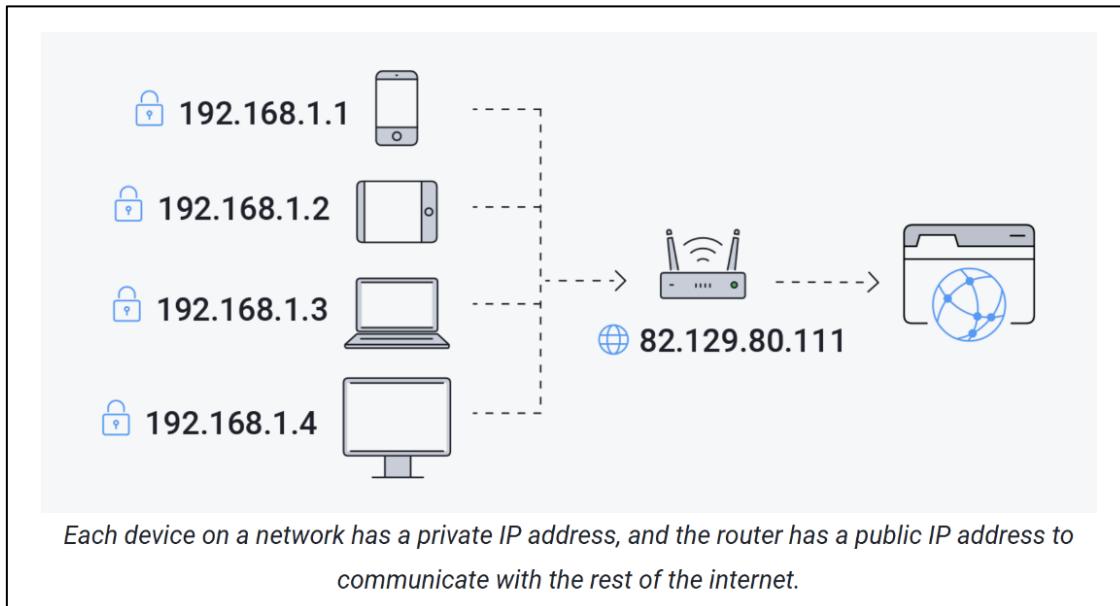
27

¹ *See, e.g., What is the Internet Protocol*, CLOUDFLARE, <https://www.cloudflare.com/learning/network-layer/internet-protocol/>; Stefano Gridelli, *What is an RFC1918 Address?*, NETBEEZ (Jan. 22, 2020), <https://netbeez.net/blog/rfc1918/>.

1 They are globally accessible, meaning they can be reached from anywhere on the
2 Internet, but are not inherently exposed unless data is being transmitted. Public IP
3 addresses are essential for devices requiring direct Internet access.

4 45. Public IP addresses can be used to determine the approximate physical
5 location of a device. For example, services like iplocation.io, use databases that map IP
6 addresses to geographic areas, often providing information about the country, city,
7 approximate latitude and longitude coordinates, or even the internet service provider
8 associated with the public IP. This geolocation capability is leveraged by online
9 advertising and user identification services.

10 46. In contrast, private IP addresses are used within internal networks and are
11 not routable on the public Internet. The Internet Assigned Numbers Authority (“IANA”)
12 reserves specific ranges of numbers to be exclusively used for private IP addresses (e.g.,
13 172.16.0.0 through 172.31.255.255). They are isolated from the global Internet and can
14 be reused across different networks without conflict. For example, a home network in
15 New York and an office network in Tokyo can both use the same private IP address (e.g.,
16 192.168.1.1) for their routers without conflict.


17 47. The distinction between a public and private IP address is fundamental to
18 the architecture of modern networks. Public IP addresses facilitate global
19 communication, while private IP addresses conserve the finite amount of combinations
20 to make an IP address through local network communication. And crucially, a private
21 IP address does not divulge a user’s geolocation, whereas a public IP address does and
22 is thus extensively used in advertising.

23 48. An analogy is useful. A public IP address is like the number for a landline
24 telephone for a household. A private IP address is like each handset that is connected to
25 that landline number (e.g., “Handset #1,” “Handset #2”). A lot can be gleaned from
26 knowing the phone number who is making the call, while knowing Handset #1 versus
27 Handset #2 is making a call provides additional information.

28 ///

1 49. The same is true of IP addresses. The public IP address divulges the
2 approximate location of the user that is connecting to the Internet and the router directing
3 those communications (presumably the user's house or workplace), and it is the means
4 through which the user actually communicates with the website and the Internet at large.
5 The private IP address then distinguishes between the devices accessing the same public
6 IP address.²

Figure 2:

50. Thus, the differences between public and private IP addresses are as follows:³

111

111

² While the Trackers do not collect private IP addresses, as discussed below, the Trackers also collect Device Metadata, which distinguishes between devices accessing the same public IP address. So, by installing the Trackers on Website users' browsers, Defendant allows third parties to collect information that is analogous to a telephone number (the public IP address) and the specific handset that is making the call (the "Device Metadata").

³ WHAT'S THE DIFFERENCE BETWEEN A PUBLIC AND PRIVATE IP ADDRESS?, AVIRA (Jan. 31, 2024), <https://www.avira.com/en/blog/public-vs-private-ip-address>.

Figure 3:

Category	Private IP address	Public IP address
Scope	The private IP address only has a local scope in your own network.	The public IP address's scope is global.
Communication	It is used so devices within a network can communicate with each other.	It allows access to the internet and is used for communication outside of your own network.
Uniqueness	It's an address from a smaller range that's used by other devices in other local networks.	It's a unique address that's not used by other devices on the internet.
Provider	The router assigns a private IP address to a specific device on the local network.	The internet service provider assigns the public IP address.
Range	Private IP address ranges: 10.0.0.0 – 10.255.255.255, 172.16.0.0 – 172.31.255.255, 192.168.0.0 – 192.168.255.255	Any IP address that isn't within a private IP address range.

51. A public IP address is therefore "routing, addressing, or signaling information." A public IP address functions as "routing, addressing, or signaling information" by facilitating internet communication. It provides essential information that can help determine the general geographic coordinates of a user accessing a website through geolocation databases. Additionally, a public IP address is involved in routing communications from the user's router to the intended destination, ensuring that emails, websites, streaming content, and other data reach the user correctly.

52. As "routing, addressing, or signaling information," a public IP address is indispensable for maintaining seamless and efficient connection over the Internet. It ensures that data packets are sent from the user's router to the intended destination, such as a website or email server.

53. A public IP address is “addressing” information because it determines the general geographic coordinates of the user who is accessing a website.

111

1 54. A public IP address is “routing” or “signaling” information because it is
 2 sending or directing the user’s communication from the router in their home or work to
 3 the website they are communicating with, and ensuring that “emails, websites, streaming
 4 content, and other data reaches you correctly.”⁴

5 55. Through a public IP address, a device’s state, city, zip code, and
 6 approximate latitude and longitude can be determined. Thus, knowing a user’s public
 7 IP address and therefore geographical location “provide[s] a level of specificity
 8 previously unfound in marketing.”⁵

9 56. A public IP address allows advertisers to (i) “[t]arget [customers by]
 10 countries, cities, neighborhoods, and ... postal code”⁶ and (ii) “to target specific
 11 households, businesses[,] and even individuals with ads that are relevant to their
 12 interests.”⁷ Indeed, “IP targeting is one of the most targeted marketing techniques
 13 [companies] can employ to spread the word about [a] product or service”⁸ because
 14 “[c]ompanies can use an IP address ... to personally identify individuals.”⁹

15 57. In fact, a public IP address is a common identifier used for “geomarketing,”
 16 which is “the practice of using location data to identify and serve marketing messages to
 17 a highly-targeted audience. Essentially, geomarketing allows [websites] to better serve
 18 [their] audience by giving [them] an inside look into where they are, where they have
 19 been, and what kinds of products or services will appeal to their needs.”¹⁰ For example,

20

⁴ Anthony Freda, *Private IP vs Public IP: What’s the Difference?*, AVG (June 4, 2021),
 21 <https://www.avg.com/en/signal/public-vs-private-ip-address>.

22 ⁵ *IP Targeting: Understanding This Essential Marketing Tool*, ACCUDATA (Nov. 20, 2023),
 23 <https://www.accudata.com/blog/ip-targeting/>.

24 ⁶ *Location-Based Targeting That Puts You in Control*, CHOOZLE, <https://choozle.com/geotargeting-strategies/>.

25 ⁷ Herbert Williams, *The Benefits of IP Address Targeting for Local Businesses*, LINKEDIN (Nov. 29,
 26 2023), <https://tinyurl.com/c2ne77ua>.

27 ⁸ *IP Targeting: Understanding This Essential Marketing Tool*, ACCUDATA (Nov. 20, 2023),
 28 <https://www.accudata.com/blog/ip-targeting/>.

29 ⁹ Trey Titone, *The Future Of IP Address As An Advertising Identifier*, AD TECH EXPLAINED (May
 30 16, 2022), <https://adtechexplained.com/the-future-of-ip-address-as-an-advertising-identifier/>.

31 ¹⁰ See, e.g., *The Essential Guide to Geomarketing: Strategies, Tips & More*, DEEP SYNC (Nov. 20,
 32 2023), <https://deepsync.com/geomarketing/>.

1 for a job fair in specific city, companies can send advertisements to only those in the
 2 general location of the upcoming event.¹¹

3 58. “IP targeting is a highly effective digital advertising technique that allows
 4 you to deliver ads to specific physical addresses based on their internet protocol (IP)
 5 address. IP targeting technology works by matching physical addresses to IP addresses,
 6 allowing advertisers to serve ads to specific households or businesses based on their
 7 location.”¹²

8 59. “IP targeting capabilities are highly precise, with an accuracy rate of over
 9 95%. This means that advertisers can deliver highly targeted ads to specific households
 10 or businesses, rather than relying on more general demographics or behavioral data.”¹³

11 60. In addition to “reach[ing] their target audience with greater precision,”
 12 businesses are incentivized to use a customer’s public IP address because it “can be more
 13 cost-effective than other forms of advertising.”¹⁴ “By targeting specific households or
 14 businesses, businesses can avoid wasting money on ads that are unlikely to be seen by
 15 their target audience.”¹⁵

16 61. In addition, “IP address targeting can help businesses to improve their
 17 overall marketing strategy.”¹⁶ “By analyzing data on which households or businesses
 18 are responding to their ads, businesses can refine their targeting strategy and improve
 19 their overall marketing efforts.”¹⁷

20 ¹¹ See, e.g., *Personalize Your Website And Digital Marketing Using IP Address*, GEOFLI,
 21 <https://geofli.com/blog/how-to-use-ip-address-data-to-personalize-your-website-and-digital-marketing-campaigns>.

22 ¹² *IP Targeting*, SAVANT DSP, https://www.savantdsp.com/ip-targeting?gad_source=1&gclid=Cj0KCQjw1Yy5BhD-ARIsAI0RbXZJKJSqMI6p1xAxyqai1WhAiXRJTbX8qYhNuEvIfSCJ4jfOV5-5maUaAgtNEALw_wcB.

23 ¹³ *Id.*

24 ¹⁴ Herbert Williams, *The Benefits of IP Address Targeting for Local Businesses*, LINKEDIN (Nov. 29, 2023), <https://www.linkedin.com/pulse/benefits-ip-address-targeting-local-businesses-herbert-williams-z7bfh>.

25 ¹⁵ *Id.*

26 ¹⁶ *Id.*

27 ¹⁷ *Id.*

62. The collection of IP addresses here is particularly invasive here: As a report from NATO found:

[a] data broker may receive information about a[] [website] user, including his ... IP address. The user then opens the [website] while his phone is connected to his home Wi-Fi network. When this happens, the data broker can use the IP address of the home network to identify the user's home, and append this to the unique profile it is compiling about the user. If the user has a computer connected to the same network, this computer will have the same IP address. The data broker can then use the IP address to connect the computer to the same user, and identify that user when their IP address makes requests on other publisher pages within their ad network. Now the data broker knows that the same individual is using both the phone and the computer, which allows it to track behaviour across devices and target the user and their devices with ads on different networks.¹⁸

63. In other words, not only does the collection of IP addresses by the Third Parties cause harm in and of itself, data brokers use IP addresses to identify users, append the IP address to a unique profile containing even more information about the user, attach specific IP addresses to comprehensive user profiles, and track Plaintiff and Class Members across the Internet using their IP addresses, compiling vast reams of other personal information in the process.

64. For these reasons, under Europe's General Data Protection Regulation, IP addresses are considered "personal data, as they can potentially be used to identify an individual."¹⁹

111

¹⁸ HENRIK TWETMAN & GUNDARS BERGMANIS-KORATS, NATO STRATEGIC COMMUNICATIONS CENTRE OF EXCELLENCE, DATA BROKERS AND SECURITY at 11 (2020), https://stratcomcoe.org/cuploads/pfiles/data_brokers_and_security_20-01-2020.pdf.

¹⁹ IS AN IP ADDRESS PERSONAL DATA?, CONVESIO, <https://convesio.com/knowledgebase/article/is-an-ip-address-personal-data/>; *see also* WHAT IS PERSONAL DATA?, EUROPEAN COMMISSION, https://commission.europa.eu/law/law-topic/data-protection/reform/what-personal-data_en

1 65. When companies build their websites, they install or integrate various third-
 2 party scripts into the code of the website in order to collect data from users or perform
 3 other functions.²⁰

4 66. Often times, third-party scripts are installed on websites “for advertising
 5 purposes.”²¹

6 67. Further, “[i]f the same third-party tracker is present on many sites, it can
 7 build a more complete profile of the user over time.”²²

8 68. Defendant has long incorporated the Trackers’ code into the code of its
 9 Website, including when Plaintiff and Class Members visited the Website. Thus, when
 10 Plaintiff visited the Website, the Website caused the Trackers to be installed on
 11 Plaintiff’s and other users’ browsers.

12 69. As described below, when a user visits the Website, the Website’s code as
 13 programmed by Defendant installs the Trackers onto the user’s browser. This allows the
 14 Third Parties through their respective Trackers to collect Plaintiff’s and Class Members’
 15 IP addresses, Device Metadata, and User Information, and pervasively track them across
 16 the Internet.

17 70. Public IP addresses play a significant role in digital marketing by enabling
 18 geographic targeting based on a user’s approximate location. Through IP geolocation
 19 services, advertisers can often determine a user’s country, region, city, and in some
 20 cases, ZIP code or service area. In contexts where a static IP address is associated with
 21 a fixed residence or business, this data can contribute to household-level or business-
 22 level targeting, particularly when combined with other tracking identifiers and third-
 23 party enrichment.

24

25 ²⁰ See *Third-party Tracking*, PIWIK, <https://piwik.pro/glossary/third-party-tracking/> (“Third-party
 26 tracking refers to the practice by which a tracker, other than the website directly visited by the user,
 27 traces or assists in tracking the user’s visit to the site. Third-party trackers are snippets of code that
 to other companies...”).

21 *Id.*

22 *Id.*

1 71. Defendant and the Third Parties then use the public IP addresses, Device
2 Metadata, User Information, and other information of Website visitors that are collected
3 and set by the Trackers, including those of Plaintiff and Class Members, to deanonymize
4 Plaintiff and Class Members, serve hyper-targeted advertisements, and unjustly enrich
5 themselves through this improperly collected information. Defendant installs Trackers
6 on users' browsers to collect User Information, including IP addresses and full URLs,
7 which constitute outgoing routing and addressing metadata under CIPA. These
8 identifiers serve the same function as telephony dialed numbers and therefore meet the
9 statutory definition of a pen register or trap and trace device.

10 72. At no time prior to the installation and use of the Trackers on Plaintiff's and
11 Class Members's browsers, or prior to the use of the Trackers, did Defendant procure
12 Plaintiff's and Class Members's consent for such conduct. Nor did Defendant obtain a
13 court order to install or use the Trackers.

14 ***3. The Use of Pixel Trackers or Beacons and Digital Fingerprinting***

15 73. Website users typically expect a degree of anonymity when browsing,
16 particularly when they are not logged into an account. However, upon visiting the
17 Website, Plaintiff's and Class Members' browsers executed third-party tracking scripts
18 embedded by the Defendant. These Trackers operate in the background of the browsing
19 session and collect detailed behavioral and technical information, which is then
20 transmitted to external third-party servers without the users' active awareness. These
21 transmissions occurred silently, automatically, and without any visual indication to
22 Plaintiff. No disclosure, banner, or mechanism alerted Plaintiff that her device would
23 serve as a communication channel to multiple unrelated advertising and identity-
24 resolution vendors.

25 74. The third-party transmissions were triggered the moment Plaintiff's
26 browser attempted to load each page, duplicating Plaintiff's outgoing GET and POST
27 requests and routing those signals to multiple advertising and identity-resolution
28 endpoints before the requested pages finished loading or became visible on her device.

1 75. The Trackers also causes additional data points to be sent from Plaintiff's
2 and Class Members' browser to the Third Parties, which are meant to uniquely identify
3 users across sessions and devices. In addition to the public IP address, key elements
4 include the user-agent string (browser, operating system, and device type) and device
5 capabilities such as supported image formats and compression methods. Persistent
6 identifiers like the PUID, GUID, UID, PSVID, and User-Agent ensure users can be
7 tracked even after clearing standard session data like cookies. Advanced methods like
8 fingerprinting and server-side matching remain unaffected by cookie deletion.
9 Combined, these elements form a detailed, unique fingerprint that allows for cross-site
10 tracking and behavioral profiling.

11 76. This process, known as digital fingerprinting, involves compiling various
12 data points such as browser version, screen resolution, installed fonts, device type, and
13 language settings to generate a unique identifier for each user. Fingerprinting can be used
14 to recognize repeat visits and correlate activity across different sessions or sites. When
15 combined with form inputs, login activity, or third-party enrichment, fingerprinting can
16 contribute to broader profiling of a user's interests, affiliations, or behaviors.

17 77. When combined with additional tracking mechanisms such as cookies,
18 login data, and third-party enrichment services, fingerprinting contributes to user
19 profiling. This may include inferring location, browsing habits, consumer preferences,
20 and potentially associating these patterns with known user identities. A sufficiently
21 detailed digital fingerprint especially when correlated with other identifiers such as email
22 addresses, form submissions, or third-party databases, can enable the reidentification of
23 a user.

24 78. The ability to associate a persistent digital profile with a specific individual
25 using techniques such as digital fingerprinting has led to the development of a data
26 industry known as identity resolution. Identity resolution involves recognizing users
27 across sessions, devices, and platforms by connecting various identifiers derived from
28 their digital behavior, including IP addresses, browser metadata, cookies, and, in some

1 cases, login credentials. The process may occur deterministically (based on known
2 logins or user-submitted information) or probabilistically (based on behavioral or
3 technical similarity).

4 79. In simpler terms, pen register and trap and trace mechanisms, in the digital
5 context, refer to technologies that record metadata such as IP addresses, URLs visited,
6 and device characteristics, information that identifies the routing and addressing of
7 electronic communications. This can be achieved through the deployment of tracking
8 technologies like the Trackers installed, executed, embedded, or injected in the Website,
9 which operate without user interaction or visibility.

10 80. The Trackers provide analytics and marketing services to Defendant using
11 the data collected from visitors to the Website when they visited the Website and from
12 when they visited other websites that included the pen register and trap and trace devices.

13 81. When users visit the Website, installed, executed, embedded or injected
14 Trackers initiate network requests to third-party servers, using invisible image pixels,
15 JavaScript calls, or beacon APIs. These requests include the user's IP address, which is
16 transmitted automatically as part of the HTTP request header. In many cases, the
17 Tracker's server responds by placing a persistent cookie in the user's browser, which
18 serves as a unique identifier that can be used to recognize and track the user across future
19 visits. If a user deletes their browser cookies, this identifier is removed. However, upon
20 revisiting the Website, the process repeats: the browser executes the Tracker's script, a
21 new identifier is set, and the Tracker resumes collecting the user's IP address and
22 associated behavioral data.

23 82. These transmissions were not abstract or speculative, but occurred in
24 connection with specific, observable actions taken by Plaintiff on the Website. For
25 example, when Plaintiff accessed the homepage and navigated to individual event listing
26 and ticket pages, his browser generated outbound network requests associated with those
27 page loads and navigational steps, transmitting page URLs, referrer paths, timestamps,
28 and browser and device metadata to third-party servers automatically as part of rendering

1 the Website. The Specific Allegations section below identifies concrete examples of the
 2 types of transmissions and third-party recipients involved, illustrating how the practices
 3 described above were implemented during Plaintiff's visit to Defendant's Website.

4 ***4. Plaintiff And Class Members' Data Has Financial Value***

5 83. Given the number of Internet users, the "world's most valuable resource is
 6 no longer oil, but data."²³

7 84. Consumers' web browsing histories have an economic value of more than
 8 \$52 per year, while their contact information is worth at least \$4.20 per year, and their
 9 demographic information is worth at least \$3.00 per year.²⁴

10 85. There is a "a study that values users' browsing histories at \$52 per year, as
 11 well as research panels that pay participants for access to their browsing histories."²⁵

12 86. Extracted personal data can be used to design products, platforms, and
 13 marketing techniques. A study by the McKinsey global consultancy concluded that
 14 businesses that "leverage customer behavior insights outperform peers by 85 percent in
 15 sales growth and more than 25 percent in gross margin."²⁶

16 87. In 2013, the Organization for Economic Cooperation and Development
 17 ("OECD") estimated that data trafficking markets had begun pricing personal data,
 18 including those obtained in illicit ways without personal consent. It found that illegal
 19 markets in personal data valued each credit cardholder record at between 1 and 30 U.S.
 20 dollars in 2009, while bank account records were valued at up to 850 U.S. dollars. Data
 21 brokers sell customer profiles of the sort that an online retailer might collect and maintain

22
 23 ²³ Ian Cohen, Are Web-Tracking Tools Putting Your Company at Risk?, Forbes (Oct 19, 2022),
 24 <https://www.forbes.com/sites/forbestechcouncil/2022/10/19/are-web-tracking-tools-putting-your-company-at-risk/?sh=26481de07444>

25 ²⁴ *In re Facebook Internet Tracking Litig.*, 140 F. Supp. 3d 922, 928 (N.D. Cal. 2015), rev'd, 956 F.3d 589 (9th Cir. 2020).

26 ²⁵ *In re Facebook, Inc. Internet Tracking Litigation* (9th Cir. 2020) 956 F.3d 589, 600.

27 ²⁶ Brad Brown, Kumar Kanagasabai, Prashant Pant & Goncalo Serpa Pinto, Capturing value from
 28 your customer data, McKinsey (Mar. 15, 2017),
<https://www.mckinsey.com/businessfunctions/quantumblack/ourinsights/capturing-value-from-your-customer-data>

1 for about 55 U.S. dollars, and that individual points of personal data ranged in price from
 2 \$0.50 cents for an address, \$2 for a birthday, \$8 for a social security number, \$3 for a
 3 driver's license number, and \$35 for a military record (which includes a birth date, an
 4 identification number, a career assignment, height, weight, and other information).
 5 Experiments asking individuals in the United States and elsewhere how much they value
 6 their personal data points result in estimates of up to \$6 for purchasing activity, and
 7 \$150-240 per credit card number or social security number.²⁷

8 88. The last estimate probably reflects public reporting that identify theft
 9 affecting a credit card number or social security number can result in financial losses of
 10 up to \$10,200 per victim.²⁸

11 89. Data harvesting is one of the fastest growing industries in the country, with
 12 estimates suggesting that internet companies earned \$202 per American user in 2018
 13 from mining and selling data. That figure is expected to increase with estimates for 2022
 14 as high as \$434 per use, reflecting a more than \$200 billion industry.

15 90. The Defendant's monetization of personal data constitutes actionable
 16 economic harm under federal law, even without evidence of a direct financial loss, as a
 17 "misappropriation-like injury" caused by converting user data into a revenue stream
 18 through targeted advertising. *In re Facebook, Inc. Internet Tracking Litigation*, 956 F.3d
 19 589 (9th Cir. 2020).

20 **5. *Defendant Is Motivated To Monetize Consumer Information Regardless of***
Consent

22 91. By implementing Trackers on the Website, Defendant participates in
 23 building detailed behavioral profiles of visitors. These profiles include information such

25 27 Exploring the Economics of Personal Data: A Survey of Methodologies for Measuring
 26 Monetary Value, OECD Digital Economy Papers, No. 220 (Apr. 2, 2013), at 27-28,
 27 <https://www.oecdilibrary.org/docserver/5k486qtxldmq-en.pdf>

28 28 Bradley J. Fikes, Identity Theft Hits Millions, Report Says, San Diego Union Tribune, Sept. 4,
 29 2003, <https://www.sandiegouniontribune.com/sdut-identity-theft-hits-millions-report-says-2003sep04-story.html>.

1 as which users viewed specific products, whether they initiated but abandoned the
2 checkout process, and what pages or buttons they interacted with. This data enables
3 Defendant and its advertising partners to identify repeat visits from the same device or
4 browser. This behavioral data is integrated into third-party advertising platforms,
5 allowing Defendant to deliver retargeted ads to users who previously visited the Website,
6 offer promotional incentives to users who showed purchase intent, and build “lookalike
7 audiences” that target users with similar behaviors or characteristics. These practices
8 significantly improve advertising efficiency and increase the likelihood of converting
9 user engagement into actual sales.

10 92. Defendant has a strong financial incentive to deploy the Trackers on its
11 Website without obtaining user consent. By enabling the collection of IP addresses and
12 device-level identifiers through these technologies, Defendant facilitates integration into
13 real-time bidding ecosystems. These systems rely on bidstream data such as IP address,
14 device type, screen resolution, and referral information to assess the value of a potential
15 ad impression. This enables Defendant and its partners to participate in data-driven ad
16 targeting, increase the value of its advertising inventory, and track users across sessions
17 and websites, all of which provide economic benefit despite the privacy implications to
18 users.

19 93. IP addresses are a valuable data point in digital advertising and tracking
20 systems. They can be used to approximate a user’s geographic location, often down to
21 the city or ZIP code level, enabling location-based targeting. When combined with
22 cookies, browser metadata, and device identifiers, IP addresses contribute to persistent
23 user tracking across sessions and websites. They also assist advertisers and data brokers
24 in linking anonymous browsing activity to existing user profiles, which enhances ad
25 targeting precision and increases the commercial value of each tracked interaction. IP
26 addresses therefore constitute “routing, addressing, or signaling information” protected
27 under CIPA § 638.50(b).

28 ///

1 94. When users' data is collected without meaningful consent and monetized,
2 they lose control over who can access, use, or distribute their personal information. Data
3 brokers and ad tech firms aggregate and correlate identifiers such as IP addresses, device
4 IDs, and cookies with other personal data to construct detailed consumer profiles.
5 Information initially gathered in one context, such as browsing a retail website, is
6 frequently repurposed for unrelated uses and sold to third parties without the user's
7 awareness. This results in pervasive surveillance, where users are continuously tracked
8 across multiple websites, applications, and devices, often without their knowledge or
9 ability to opt out.

10 ***6. Defendant's Conduct Constitutes An Invasion Of Plaintiff's And Class
11 Members' Privacy***

12 95. The collection of Plaintiff's and Class Members' personally identifying, de-
13 anonymized information through Defendant's installation and use of the Trackers
14 constitutes an invasion of privacy.

15 96. As alleged herein, the Trackers are designed to conduct targeted advertising
16 and boost Defendant's revenue, all through their surreptitious collection of Plaintiff's
17 and Class Members' personal information.

18 97. To put the invasiveness of Defendant's violations of the CIPA into
19 perspective, it is also important to understand three concepts: data brokers, real-time
20 bidding, and cookie syncing.

21 98. In short, the import of these concepts is that: (i) the Third Parties are data
22 brokers (or partner with data brokers) that collect user information from Website visitors
23 to uniquely identify and de-anonymize users by combining their IP addresses, Device
24 Metadata, User Information, and unique user ID values with whatever information those
25 Third Parties have on a user from other sources; (ii) the Third Parties share that
26 information with other entities to create the most complete user profile they can (through
27 cookie syncing), which includes a more complete and non-anonymous portrait of the
28 user; and (iii) those profiles are offered up for sale through the real-time bidding process

1 to the benefit of Defendant and the Third Parties and to the detriment of users' privacy
 2 interests.

3 **a. Data Brokers And Real-Time Bidding: The Information Economy**

4 *Data Brokers*

5 99. While “[t]here is no single, agreed-upon definition of data brokers in United
 6 States law,”²⁹ California law defines a “data broker” as “a business that knowingly
 7 collects and sells to third parties the personal information of a consumer with whom the
 8 business does not have a direct [*i.e.*, consumer-facing] relationship,” subject to certain
 9 exceptions. Cal. Civ. Code § 1798.99.80(c).

10 100. Any entity that qualifies as a “data broker” under California law must
 11 specifically register as such Cal. Civ. Code § 1798.99.82(a). Here, the ComScore tracker
 12 is operated by a registered California data broker.

13 101. “Data brokers typically offer pre-packaged databases of information to
 14 potential buyers,” either through the “outright s[ale of] data on individuals” or by
 15 “licens[ing] and otherwise shar[ing] the data with third parties.”³⁰ Such databases are
 16 extensive, and can “not only include information publicly available [such as] from
 17 Facebook but also the user’s exact residential address, date and year of birth, and
 18 political affiliation,” in addition to “inferences [that] can be made from the combined
 19 data.”³¹

20 102. For instance, the NATO report noted that data brokers collect two sets of
 21 information: “observed and inferred (or modelled).” The former “is data that has been
 22 collected and is actual,” such as websites visited.” Inferred data “is gleaned from
 23

24 ²⁹ JUSTIN SHERMAN, DUKE SANFORD CYBER POLICY PROGRAM, DATA BROKERS AND SENSITIVE
 25 DATA ON U.S. INDIVIDUALS: THREATS TO AMERICAN CIVIL RIGHTS, NATIONAL SECURITY, AND
 26 DEMOCRACY, at 2 (DUKE SANFORD CYBER POLICY PROGRAM, 2021), <https://tinyurl.com/hy9fewhs>.

27 ³⁰ SHERMAN, *supra*, at 2.

28 ³¹ Tehila Minkus et al., *The City Privacy Attack: Combining Social Media and Public Records for
 29 Detailed Profiles of Adults and Children*, COSN ’15: PROCEEDINGS OF THE 2015 ACM ON
 30 CONFERENCE ON ONLINE SOCIAL NETWORKS 71, 71 (2015), <https://dl.acm.org/doi/pdf/10.1145/2817946.2817957>.

1 observed data by modelling or profiling,” meaning what users may be *expected* to do.
 2 On top of this, “[b]rokers typically collect not only what they immediately need or can
 3 use, but hoover up as much information as possible to compile comprehensive data sets
 4 that might have some future use.”³²

5 103. Likewise, a report by the Duke Sanford Cyber Policy Program “examine[d]
 6 10 major data brokers and the highly sensitive data they hold on U.S. individuals.”³³ The
 7 report found that “data brokers are openly and explicitly advertising data for sale on U.S.
 8 individuals’ sensitive demographic information, on U.S. individuals’ political
 9 preferences and beliefs, on U.S. individuals’ whereabouts and even real-time GPS
 10 locations, on current and former U.S. military personnel, and on current U.S. government
 11 employees.”³⁴

12 104. This data collection has grave implications for Americans’ right to privacy.
 13 For instance, “U.S. federal agencies from the Federal Bureau of Investigation [] to U.S.
 14 Immigration and Customs Enforcement [] purchase data from data brokers—without
 15 warrants, public disclosures, or robust oversight—to carry out everything from criminal
 16 investigations to deportations.”³⁵

17 105. As another example:

18
 19 Data brokers also hold highly sensitive data on U.S. individuals
 20 such as race, ethnicity, gender, sexual orientation, immigration
 21 status, income level, and political preferences and beliefs (like
 22 support for the NAACP or National LGBTQ Task Force) that
 23 can be used to directly undermine individuals’ civil rights. Even
 24 if data brokers do not explicitly advertise these types of data
 25 (though in many cases they do), everything from media reporting
 26 to testimony by a Federal Trade Commission commissioner has
 27 identified the risk that data brokers use their data sets to make
 28 “predictions” or “inferences” about this kind of sensitive

³² TWETMAN & BERGMANIS-KORATS, *supra*, at 11.

³³ SHERMAN, *supra*, at 1.

³⁴ *Id.*

³⁵ *Id.* at 9.

1 information (race, gender, sexual orientation, etc.) on
 2 individuals.

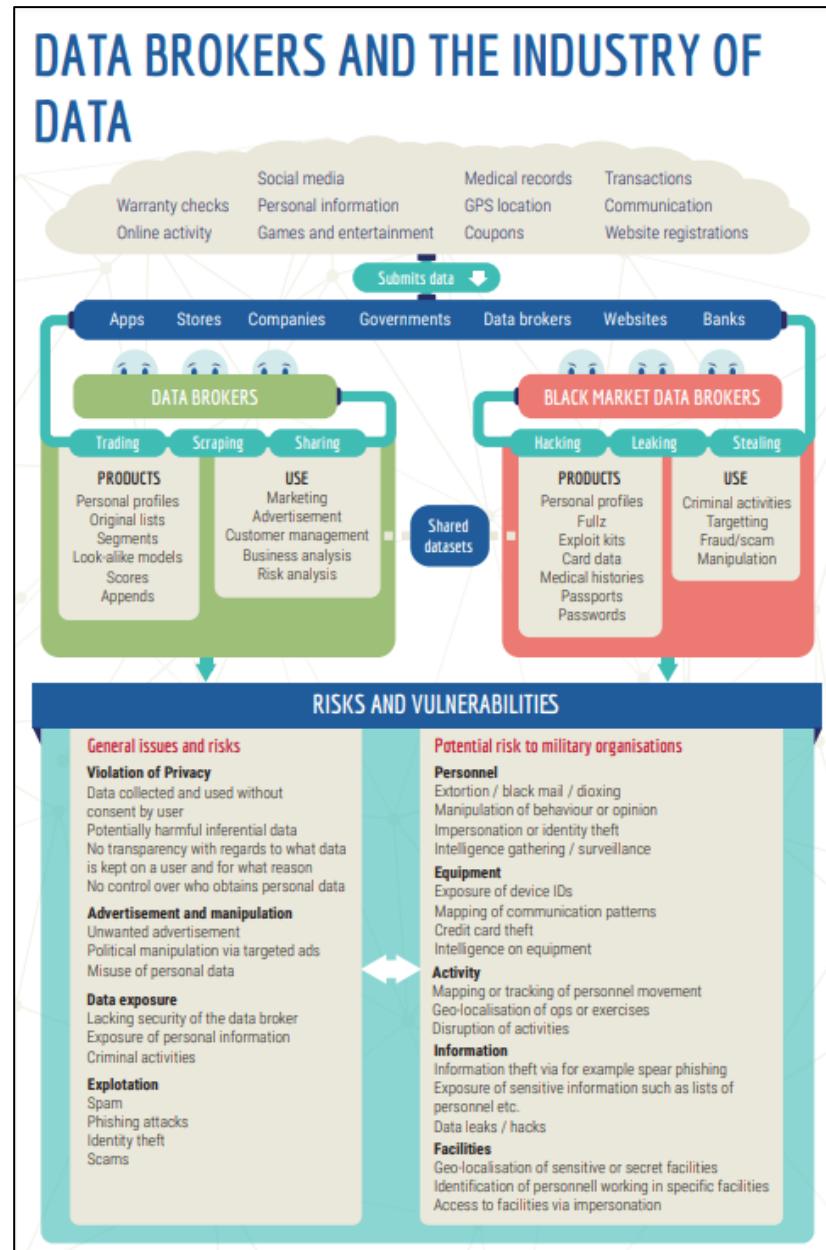
3 This data can be used by commercial entities within the U.S. to
 4 discriminately target goods and services, akin to how Facebook
 5 advertising tools allow advertisers to exclude certain groups,
 6 such as those who are identified as people with disabilities or
 7 those who are identified as Black or Latino, from seeing
 8 advertisements. Many

9 industries from health insurance to life insurance to banking to
 10 e-commerce purchase data from data brokers to run
 11 advertisements and target their services.

12 ...

13 Given identified discrimination problems in machine learning
 14 algorithms, there is great risk of these predictive tools only
 15 further driving up costs of goods and services (from insurance to
 16 housing) for minority groups.³⁶

17 106. Similarly, as the report from NATO noted, corporate data brokers cause
 18 numerous privacy harms, including but not limited to depriving users of the right to
 19 control who does and does not acquire their personal information, unwanted
 20 advertisements that can even go as far as manipulating viewpoints, and spam and
 21 phishing attacks.³⁷


22 / / /

23 / / /

24 / / /

25
 26
 27
³⁶ *Id.*

28 ³⁷ TWETMAN & BERGMANIS-KORATS, *supra*, at 8.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Figure 4:

107. As noted above, data brokers are able to compile such wide swaths of information in part by collecting users' IP addresses, Device Metadata, and User Information, which is used by data brokers to track users across the Internet.³⁸

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689

1 108. Indeed, as McAfee (a data security company) notes, “data brokers can ...
 2 even place trackers or cookies on your browsers ... [that] track your IP address and
 3 browsing history, which third parties can exploit.”³⁹

4 109. These data brokers will then:

5
 6 take that data and pair it with other data they’ve collected about
 7 you, pool it together with other data they’ve got on you, and then
 8 share all of it with businesses who want to market to you. They
 9 can eventually build large datasets about you with things like:
 10 “browsed gym shorts, vegan, living in Los Angeles, income
 11 between \$65k-90k, traveler, and single.” Then, they sort you into
 12 groups of other people like you, so they can sell those lists of
 13 like-people and generate their income.⁴⁰

14 110. In short, by collecting IP addresses Device Metadata, and User Information,
 15 data brokers and many of the entities the Third Parties sync with can track users across
 16 the Internet, compiling various bits of information about users, building comprehensive
 17 user profiles that include an assortment of information, interests, and inferences, and
 18 offering up that information for sale to the highest bidder. The “highest bidder” is a
 19 literal term, as explained below.

20 111. As a result of Defendant’s installation of trackers operated by data brokers like
 21 ComScore, and by numerous third parties with which those brokers synchronize, the
 22 information of Plaintiff and Class Members is linked to existing profiles maintained by
 23 those brokers, or used to generate new ones. This linkage occurs through the collection of
 24 IP addresses, device metadata, and other user information from the browsers of Defendant’s
 25 Website visitors.

26 //
 27

28 ³⁹ Jasdev Dhaliwal, *How Data Brokers Sell Your Identity*, McAFFEE (June 4, 2024), <https://www.mcafee.com/blogs/tips-tricks/how-data-brokers-sell-your-identity/>.

29 ⁴⁰ Paul Jarvis, *The Problem with Data Brokers: Targeted Ads and Your Privacy*, FATHOM
 ANALYTICS (May 10, 2022), <https://usefathom.com/blog/data-brokers>.

1 112. These profiles are then served up to any companies that want to advertise
 2 on Defendant's Website, and Defendant's users become more valuable as a result of
 3 having their IP addresses, Device Metadata, and User Information linked to these data
 4 broker profiles. Thus, Defendant is unjustly enriched through advertising revenue by
 5 installing the Trackers on Plaintiff's and Class Members' browsers, and thus, enabling
 6 the Third Parties to collect Plaintiff's and Class Members' IP addresses, Device
 7 Metadata, and User Information without consent.

8 *Real-Time Bidding*

9 113. Once data brokers and many of the entities the Third Parties sync with
 10 collect Website users' IP addresses, Device Metadata, and User Information, how do
 11 they "sell" or otherwise help Defendant monetize that information? This is where real-
 12 time bidding comes in.

13 114. "Real Time Bidding (RTB) is an online advertising auction that uses
 14 sensitive personal information to facilitate the process to determine which digital ad will
 15 be displayed to a user on a given website or application."⁴¹

16 115. "There are three types of platforms involved in an RTB auction: Supply
 17 Side Platforms (SSPs), Advertising Exchanges, and Demand Side Platforms (DSPs)." An SSP work[s] with website or app publishers to help them participate in the RTB
 18 process." "DSPs primarily work with advertisers to help them "[r]each relevant
 19 audiences on the open internet, drive growth, and prove your impact."⁴² And an
 20 Advertising Exchange "allows advertisers and publishers to use the same technological
 21 platform, services, and methods, and 'speak the same language' in order to exchange
 22 data, set prices, and ultimately serve an ad."⁴³

23 //
 24
 25

26 ⁴¹ Sara Geoghegan, *What is Real Time Bidding?*, ELECTRONIC PRIVACY INFORMATION CENTER (Jan.
 15, 2025), <https://epic.org/what-is-real-time-bidding/>.

27 ⁴² *Id.*

28 ⁴³ *Introducing To Ad Serving*, MICROSOFT IGNITE (Mar. 3, 2024), <https://learn.microsoft.com/en-us/xandr/industry-reference/introduction-to-ad-serving>.

1 116. In other words, SSPs provide user information to advertisers that might be
2 interested in those users, a DSP like DoubleClick is the platform on which all of this
3 happens.

4 117. The RTB process works as follows:

5
6 After a user loads a website or app, an SSP will send user data to
7 Advertising Exchanges ... The user data, often referred to as
8 “bidstream data,” contains information like device identifiers, IP
9 address, zip/postal code, GPS location, browsing history,
10 location data, and more. After receiving the bidstream data, an
11 Advertising Exchange will broadcast the data to several DSPs
12 [here, DoubleClick]. The DSPs will then examine the
13 broadcasted data to determine whether to make a bid on behalf
14 of their client.

15 Ultimately, if the DSP wins the bid, its client’s advertisement
16 will appear to the user. Since most RTB auctions are held on the
17 server/exchange side, instead of the client/browser side, the user
18 only actually sees the winner of the auction and would not be
19 aware of the DSPs who bid and lost. But even the losing DSPs
20 still benefit because they also receive and collect the user data
21 broadcasted during the RTB auction process. This information
22 can be added to existing dossiers DSPs have on a user.⁴⁴

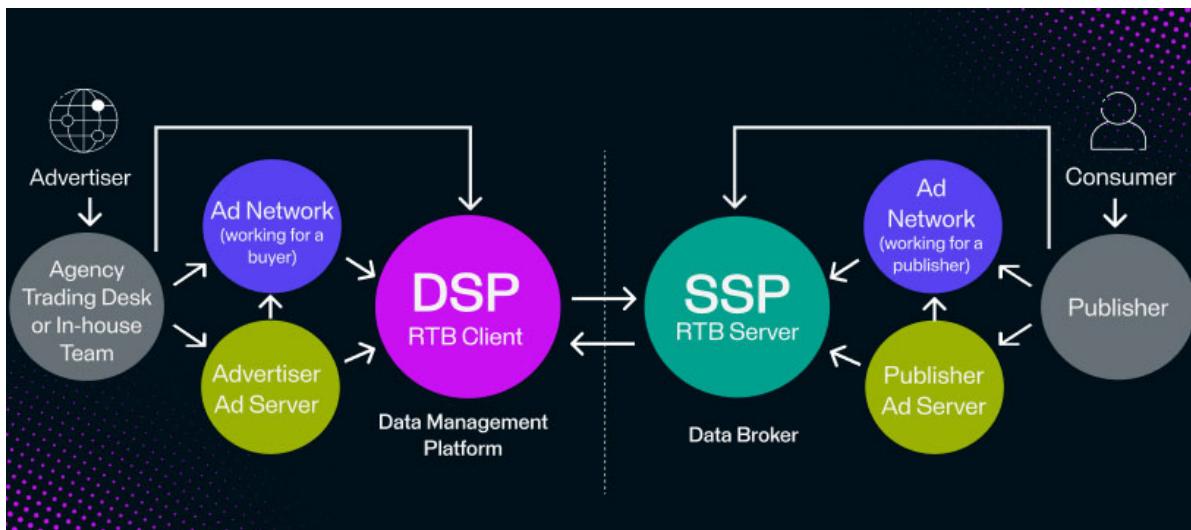
23 ///

24 ///

25 ///

26
27

⁴⁴ Geoghegan, *supra*; see also REAL-TIME BIDDING, APPSFLYER, <https://www.appsflyer.com/glossary/real-time-bidding/>.


1
2
3 **Figure 5:**
4
5
6
7
8
9
10

118. Facilitating this real-time bidding process means SSPs and DSPs must have
 11 as much information as possible about Defendant's users to procure the greatest interest
 12 from advertisers and the highest bids. These entities receive assistance because
 13 Defendant also installs the trackers of data brokers on its users' browsers:

14
 15 the economic incentives of an auction mean that DSP [or SSP]
 16 with more specific knowledge of individuals will win desirable
 17 viewers due to being able to target them more specifically and
 18 out-bid other entities. As a consequence, the bid request is not
 19 the end of the road. The DSP enlists a final actor, the data
 20 management platform (DMP) [or a data broker]. DSPs [or SSPs]
 21 send bid requests to DMPs [and data brokers], who enrich them
 22 by attempting to identify the user in the request and use a variety
 23 of data sources, such as those uploaded by the advertiser,
 24 collected from other sources, or bought from data brokers. The
 25 DSP with the highest bid not only wins the right to deliver the
 ad—through the SSP—to the individual. The DSP also wins the
 right to cookie sync its own cookies with those from the
 [Advertising Exchange], thus enabling easier linkage of the data
 to the user's profile in the future.⁴⁵

26 // /
 27

⁴⁵ Michael Veale & Federik Zuiderveen Borgesius, *Adtech and Real-Time Bidding under European Data Protection Law*, 23 GERMAN L. J. 226, 232-33 (2022) <https://tinyurl.com/yjddt5ey>.

1
2
3
4
5
6
7
8
9
10 **Figure 6:**

11
12 119. In other words, SSPs can solicit the highest bids for Website users by
13 identifying and de-anonymizing those users by combining the information they know
14 about that user with the information other data brokers know about that user. If there is
15 a match, then the SSPs will have significantly more information to provide about users,
16 and that will solicit significantly higher bids from prospective advertisers (because the
17 advertisers will have more information about the user to target their bids).

18 120. Likewise, a DSP like DoubleClick can generate the highest and most
19 targeted bids from advertisers with providing those advertisers with as much information
20 about users as possible, which it does by syncing with data brokers who, in turn, sync
21 with other data brokers and/or are data brokers themselves.

22 121. All of this naturally enriches Defendant, as its users have now become more
23 valuable thanks to the replete information the Third Parties are able to provide about
24 users.

25 122. As the Federal Trade Commission (“FTC”) has noted, “[t]he use of real-
26 time bidding presents potential concerns,” including but not limited to:

27 // /
28

- 1 a. “incentiviz[ing] invasive data-sharing” by “push[ing] publishers
 2 [i.e., Defendant] to share as much end-user data as possible to get
 3 higher valuation for their ad inventory—particularly their
 4 location data and cookie cache, which can be used to ascertain a
 5 person’s browsing history and behavior.”
- 6 b. “send[ing] sensitive data across geographic borders.”
- 7 c. sending consumer data “to potentially dozens of bidders
 8 simultaneously, despite only one of those parties—the winning
 9 bidder actually using that data to serve a targeted ad. Experts
 10 have previously cautioned that there are few (if any) technical
 11 controls ensuring those other parties do not retain that data for
 12 use in unintended ways.”⁴⁶

11 123. Given DoubleClick operates as DSP’s here, the last point is particularly
 12 relevant, as it means Google collects and discloses Website users’ information to *all*
 13 *prospective advertisers*, even if advertisers do not ultimately show a user an
 14 advertisement. This greatly diminishes the ability of users to control their personal
 15 information.

16 124. Likewise, the Electronic Privacy Information Center (“EPIC”) has warned
 17 that “[c]onsumers’ privacy is violated when entities disclose their information without
 18 authorization or in ways that thwart their expectations.”⁴⁷

19 125. For these reasons, some have characterized “real-time bidding” as “[t]he
 20 biggest data breach ever recorded” because of the shear number of entities that receive
 21 personal information⁴⁸:

22 // /



23
 24
 25 ⁴⁶ FEDERAL TRADE COMMISSION, UNPACKING REAL TIME BIDDING THROUGH FTC’S CASE ON
 26 MOBILEWALLA (Dec. 3, 2024), <https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/12/unpacking-real-time-bidding-through-ftcs-case-mobilewalla>.

26
 27 ⁴⁷ Geoghegan, *supra*.

28 ⁴⁸ DR. JOHNNY RYAN, “RTB” ADTECH & GDPR, <https://assortedmaterials.com/rtb-evidence/video>.

Figure 7:

126. All of this is in line with protecting the right to determine who does and does not get to know one’s information, a harm long recognized at common law and one the CIPA was enacted to protect against. *Ribas v. Clark*, 38 Cal. 3d 355 361 (1985) (noting the CIPA was drafted with a two-party consent requirement to protect “the right to control the nature and extent of the firsthand dissemination of [one’s] statements”); *U.S. Dep’t of Justice v. Reporters Comm. for Freedom of the Press* 489 U.S. 749, 763-64 (1989) (“[B]oth the common law and the literal understandings of privacy encompass the individual’s control of information concerning his or her person.”).

Cookie Syncing

127. It should now be clear both the capabilities of the Third Parties (*i.e.*, data brokers like ComScore who de-anonymize users, or companies who sync with data brokers for this purpose) and the reasons Defendant installs their Trackers on its Website (to sell to advertisers in real-time bidding with as much information about users as possible to solicit the highest bids). The final question is how do these Third Parties

1 share information amongst each other and with others to offer the most complete user
 2 profiles up for sale? This occurs through “cookie syncing.”

3 128. Cookie syncing is a process that “allow[s] web companies to share
 4 (synchronize) cookies, and match the different IDs they assign for the same user while
 5 they browse the web.”⁴⁹ This allows entities like the Third Parties to circumvent “the
 6 restriction that sites can’t read each other cookies, in order to better facilitate targeting
 7 and real-time bidding.”⁵⁰

8 129. Cookie syncing (“CSync”) works as follows:

9
 10 Let us assume a user browsing several domains like
 11 website1.com and website2.com, in which there are 3rd-parties
 12 like tracker.com and advertiser.com, respectively. Consequently,
 13 these two 3rd-parties have the chance to set their own cookies on
 14 the user’s browser, in order to re-identify the user in the future.
 Hence, tracker.com knows the user with the ID user123, and
 advertiser.com knows the same user with the ID userABC.

15 Now let us assume that the user lands on a website (say
 16 website3.com), which includes some JavaScript code from
 17 tracker.com but not from advertiser.com. Thus, advertiser.com
 18 does not (and cannot) know which users visit website3.com.
 19 However, *as soon as the code of tracker.com is called, a GET*
20 request is issued by the browser to tracker.com (step 1), and it
21 responds back with a REDIRECT request (step 2), instructing
the user’s browser to issue another GET request to its
collaborator advertiser.com this time, using a specifically
crafted URL (step 3).

22 ...
 23
 24

25 ⁴⁹ Panagiotis Papadopoulos et al., *Cookie Synchronization: Everything You Always Wanted to Know*
 26 *But Were Afraid to Ask*, 1 WWW ’19: THE WORLD WIDE WEB CONFERENCE 1432, 1432 (2019),
<https://dl.acm.org/doi/10.1145/3308558.3313542>.

27 ⁵⁰ Gunes Acar et al., *The Web Never Forgets: Persistent Tracking Mechanisms in the Wild*, 6B
 28 CCS’14: ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY 674, 674
 (2014)

When advertiser.com receives the above request along with the cookie ID userABC, it finds out that userABC visited website3.com. *To make matters worse, advertiser.com also learns that the user whom tracker.com knows as user123, and the user userABC is basically one and the same user.* Effectively, CSync enabled advertiser.com to collaborate with tracker.com, in order to: (i) find out which users visit website3.com, and (ii) synchronize (i.e., join) two different identities (cookies) of the same user on the web.⁵¹

Figure 8:

130. Through this process, third party trackers are not only able to resolve user identities (e.g., learning that who Third Party #1 knew as “userABC” and Third Party #2 knew as “user123” are the same person), they can “track a user to a much larger number of websites,” even though that “do not have any collaboration with” the third party.⁵²

⁵¹ Papadopoulos, *supra*, at 1433.

⁵² Papadopoulos, *supra*, at 1434.

1 131. On the flip side, “CSync may re-identify web users even after they delete
 2 their cookies.”⁵³ “[W]hen a user erases her browser state and restarts browsing, trackers
 3 usually place and sync a new set of userIDs, and eventually reconstruct a new browsing
 4 history.”⁵⁴ But if a tracker can “respawn” its cookie or like to another persistent identifier
 5 (like an IP address), “then through CSync, all of them can link the user’s browsing
 6 histories from before and after her state erasure. Consequently: (i) users are not able to
 7 abolish their assigned userIDs even after carefully erasing their set cookies, and (ii)
 8 trackers are enabled to link user’s history across state resets.”⁵⁵

9 132. Thus, “syncing userIDs of a given user increases the user identifiability
 10 while browsing, thus reducing their overall anonymity on the Web.”⁵⁶

11 133. The tracking activity at issue does not depend on users remaining
 12 anonymous. When the Trackers deployed on the Website execute within a user’s
 13 browser, they assign and transmit persistent identifiers and related signaling data to their
 14 respective third-party operators as part of ordinary analytics, advertising, and session-
 15 measurement functions. As a result, the same browser or device can be recognized across
 16 multiple pageviews and visits to the Website by those third parties. This persistence
 17 allows third-party platforms to associate a user’s browsing activity with an identifiable
 18 browser or device profile over time, thereby eliminating true anonymity during visits to
 19 the Website, even in the absence of account login or user-provided identifying
 20 information.

21 134. To summarize the proceeding allegations, data brokers focus on collecting
 22 as much information about Website users as possible to create comprehensive user
 23 profiles, and the Trackers sync with numerous other data brokers that do the same. The
 24 Third Parties collect IP addresses, Device Metadata, User Information, and unique user
 25 IDs in the first instance, but those pieces of information are connected to information the

26 ⁵³ *Id.*

27 ⁵⁴ *See id.*

28 ⁵⁵ *Id.*

⁵⁶ *Id.* at 1441.

1 Third Parties glean from other sources (e.g., various data brokers) to build
2 comprehensive profiles. Through “cookie syncing,” those profiles are shared amongst
3 the Third Parties and with other entities to form the most fulsome picture with the most
4 attributes as possible. And those profiles are offered up for sale to interested advertisers
5 through real-time bidding using the Third Parties’ trackers, where users will command
6 more value the more advertisers know about a user.

7 135. Thus, the Third Parties enrich the value Defendant’s users would otherwise
8 command by tying the data they obtain directly from users on the Website (e.g., IP
9 addresses, Device Metadata, User Information, unique user IDs) with comprehensive
10 user profiles.

11 136. Accordingly, Defendant is using the Trackers in conjunction with the Third
12 Parties to (i) de-anonymize users, (ii) offer its users up for sale in real-time bidding, and
13 (iii) monetize its Website by installing the Trackers and allowing the Third Parties to
14 collect as much information about Website users as possible (without consent).

15 137. Thus, Defendant is unjustly enriched through their installation and use of
16 the Trackers, which causes data to be collected by Third Parties without Plaintiff’s and
17 Class Members’ consent, and that enable the Third Parties to sell Defendant’s user
18 inventory in an ad-buying system. In addition, Plaintiff and Class Members lose the
19 ability to control their information, as their information ends up in the hands of data
20 brokers, advertising inventory sellers, and a virtually unlimited number advertisers
21 themselves without knowledge or consent.

22 138. When a user visits the Website, a suite of background tracking technologies
23 is activated immediately upon page load. These include client-side scripts deployed by
24 third-party Trackers, which begin collecting various categories of User Information
25 without any visible indication to the user. Together, these technologies function as a
26 coordinated data collection infrastructure that allows Defendant to analyze user behavior
27 at a highly granular level and to leverage that insight in real time for marketing
28 optimization, user targeting, and business intelligence.

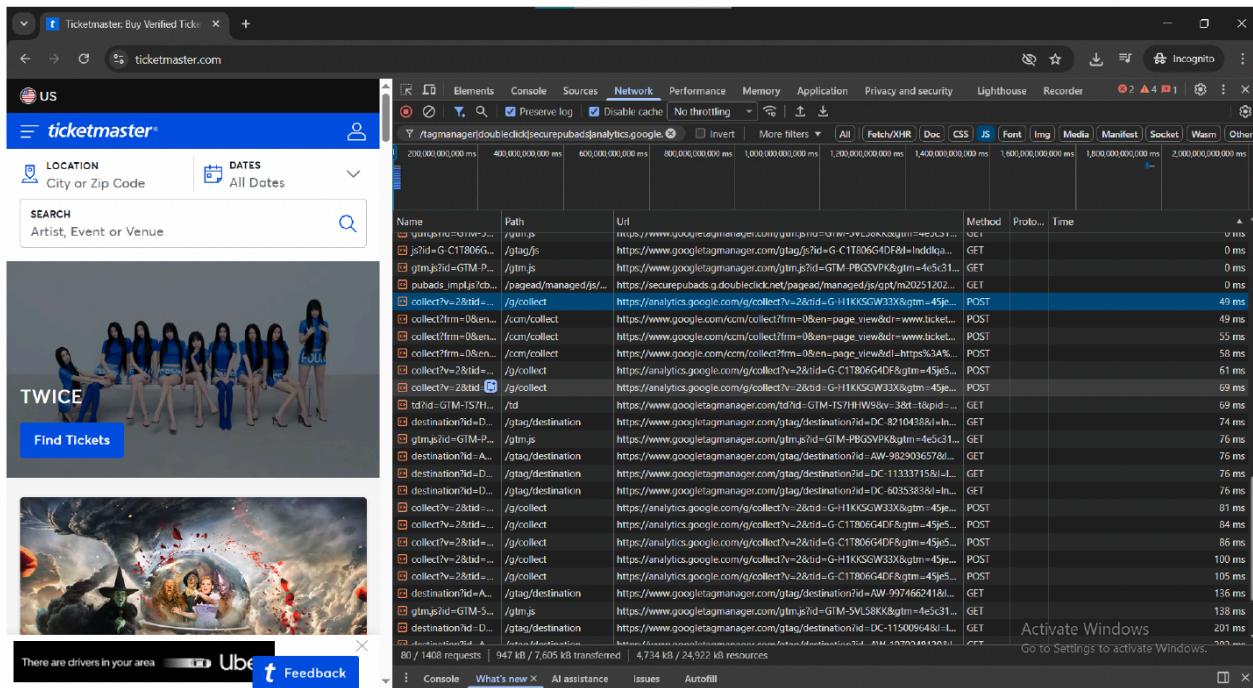
1 139. On information and belief, the Trackers operate as part of a vast and
2 interconnected digital advertising ecosystem and these entities leverage shared
3 identifiers, cookie syncing, and cross-device tracking techniques to follow users across
4 websites, platforms, and environments, with tools specifically engineered to build
5 persistent consumer profiles, enabling real-time behavioral targeting and identity
6 resolution at scale.

7 140. Defendant deploys the Trackers to build a behavioral profiling and targeted
8 advertising system. Several of these trackers are dynamically injected into the Website
9 through tag management systems, initiating the collection of user behavior such as
10 pageviews, navigation patterns, and session metadata. Others are directly embedded into
11 the Website's code, firing automatically upon page load. Together, these technologies
12 associate user behavior with device identifiers, cookies, and pseudonymous advertising
13 IDs, facilitating the construction of persistent user profiles for advertising and marketing
14 purposes.

15 141. The Trackers participate in programmatic advertising ecosystems by
16 capturing behavioral signals from the Website and linking them to advertising audiences.
17 These trackers enable personalized ad delivery based on users' site interactions and
18 associate browsing activity with broader ad networks through identifier syncing. Each
19 of these platforms sets or reads cookies to maintain persistent tracking across sessions
20 and domains, effectively participating in workflows designed to reidentify users and
21 expand behavioral audience segments for targeted advertising.

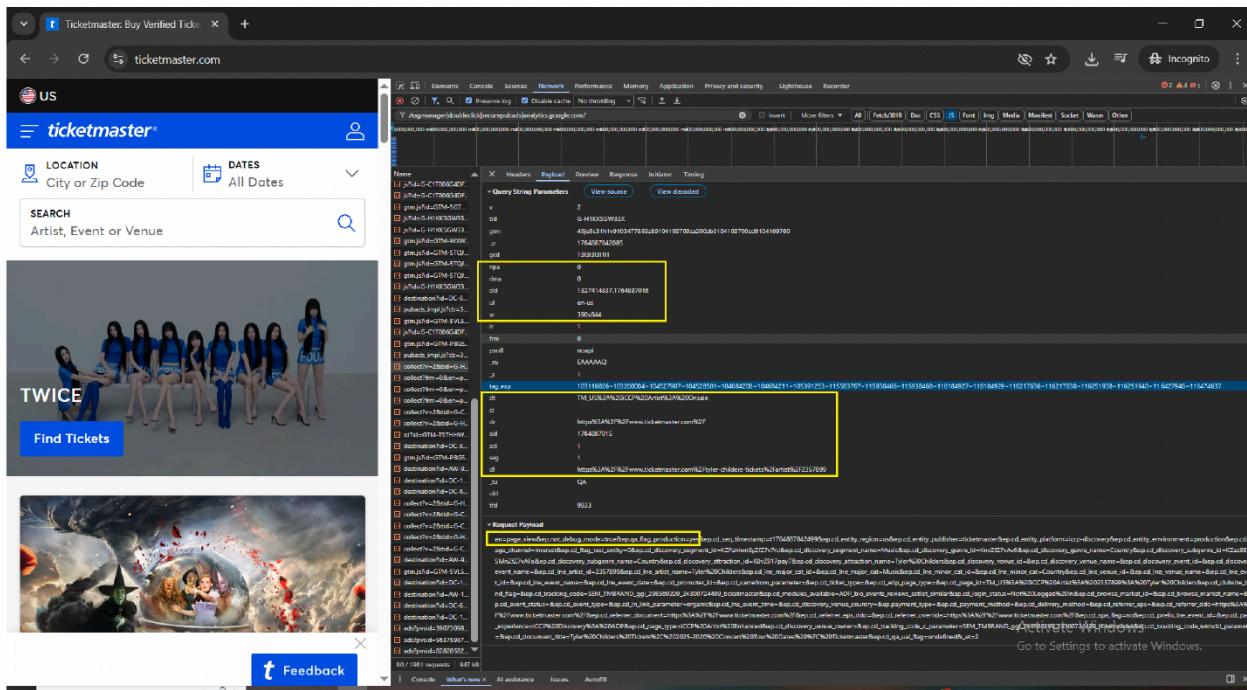
22 142. On information and belief, Google LLC, through its DoubleClick
23 advertising technology, operates as a DSP in connection with the Website, facilitating
24 the delivery, measurement, and optimization of advertising campaigns across third-party
25 websites. As deployed on Defendant's Website, the DoubleClick Tracker receives
26 DRAS information generated during users' visits, including page URLs, referrer
27 headers, timestamps, and Google-assigned browser or device identifiers transmitted
28 automatically during page load and navigation events. On information and belief, this

1 information is used by DoubleClick to recognize and classify user browsers or devices
2 across multiple pageviews or sessions and to associate those interactions with
3 advertising audiences and campaign identifiers for purposes of targeted advertising
4 delivery and measurement. Through this process, navigation signals originating on the
5 Website are incorporated into Google's advertising systems in a manner consistent with
6 demand-side advertising operations.


7 **V. SPECIFIC ALLEGATIONS**

8 **1. *The Google Trackers***

9 143. Defendant embedded Google tracking technologies on the Website,
10 including Google Tag Manager, Google Analytics (GA4), and Google Ads /
11 DoubleClick (collectively, the "Google Trackers"). These technologies execute
12 automatically when a user loads the Ticketmaster homepage and cause the user's
13 browser to transmit dialing, routing, addressing, and signaling information to Google-
14 controlled servers without any user interaction. The information transmitted includes
15 page URLs, referrer paths, timestamps, browser and device characteristics, and Google-
16 assigned identifiers generated as part of Google's analytics and advertising
17 infrastructure.


18 144. Figure 9 is a Chrome DevTools Network capture showing a dense cluster
19 of Google requests firing immediately upon loading Ticketmaster's homepage. The
20 capture includes GA4 event beacons (collect?v=2), execution of Google Tag Manager
21 and gtag.js, calls to Google Analytics collection endpoints, and advertising-related
22 requests to securepubads.g.doubleclick.net. All of these requests occur within the initial
23 milliseconds of page load, before any user interaction and without any consent interface
24 visible. This figure demonstrates that Google's analytics and advertising stack is invoked
25 automatically by the Website and begins transmitting page-level signaling information
26 as part of the initial rendering process.

27
28 / / /

1
2
3
4 **Figure 9:**
5
6
7
8
9
10
11
12
13

145. Figure 10 is a Chrome DevTools payload capture revealing the contents of a Google Analytics collection request generated at page load. The payload includes the full Ticketmaster page URL, referrer information, timestamped event metadata, screen resolution, Google property identifiers, and additional structured fields used for session continuity and engagement measurement. These values are transmitted at the moment the page loads and are not necessary to display content to the user. The payload demonstrates that Google receives detailed contextual, temporal, and device-level signaling information associated with the visit as part of the Website's ordinary operation.

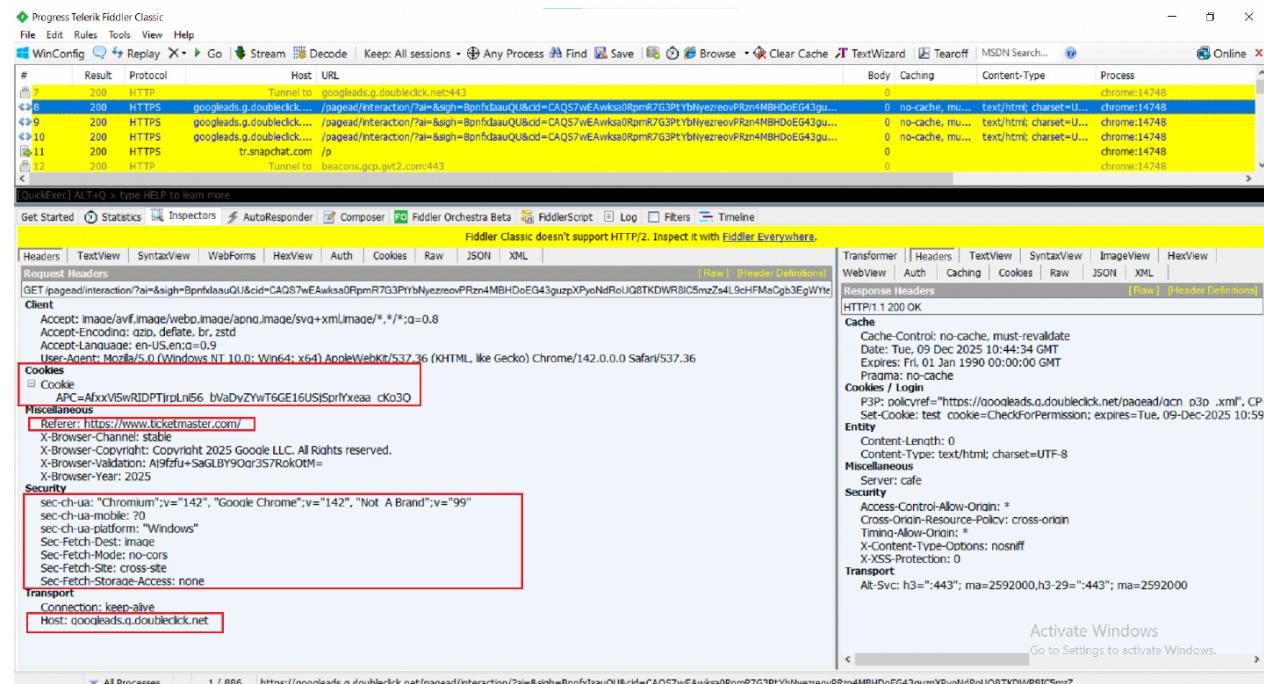
23
24 ///
25
26 ///
27
28 ///

1
2
3
4 **Figure 10:**
5
6
7
8
9
10
11
12
13

146. Figure 11 is a Fiddler capture showing the live outbound transmission of
 14 Google Ads / DoubleClick requests from the user's browser to Google advertising
 15 infrastructure. The capture reveals the transmission of Google advertising cookies,
 16 browser and device metadata contained in request headers, referrer information
 17 identifying the Ticketmaster page, and advertising-related request parameters sent to
 18 DoubleClick endpoints. This figure confirms that the signaling information observed in
 19 the browser is actually transmitted across the network to Google and that Google's
 20 advertising systems operate in parallel with Google Analytics during the same page-load
 21 sequence.

22

23


24 // /

25

26 // /

27

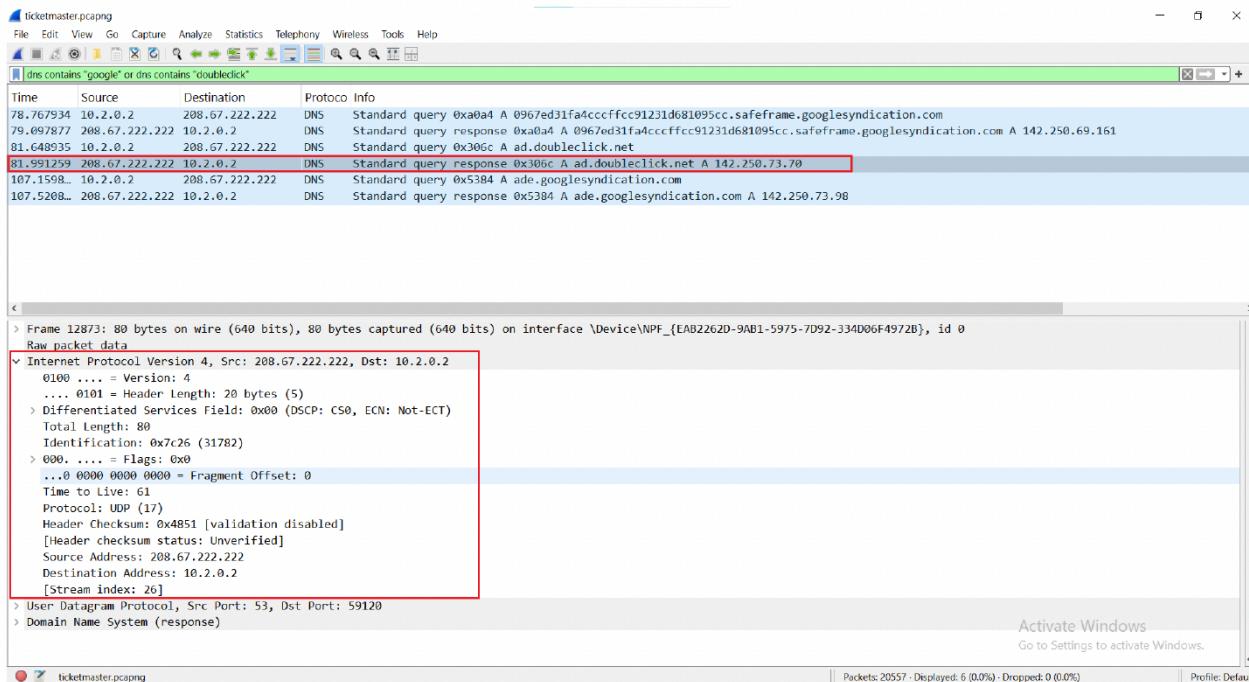
28 // /

Figure 11:

147. Figure 12 is a Wireshark capture showing DNS resolution and network routing associated with Google domains contacted during the session, including analytics and advertising endpoints. The capture identifies the client device initiating DNS queries and the resolution of those queries to Google-controlled IP addresses. This network-layer evidence corroborates that the Website-initiated Google requests observed in the browser and application layers are routed off the user's device to Google infrastructure during the initial page load.

11
22 // /

23


24

25 // /

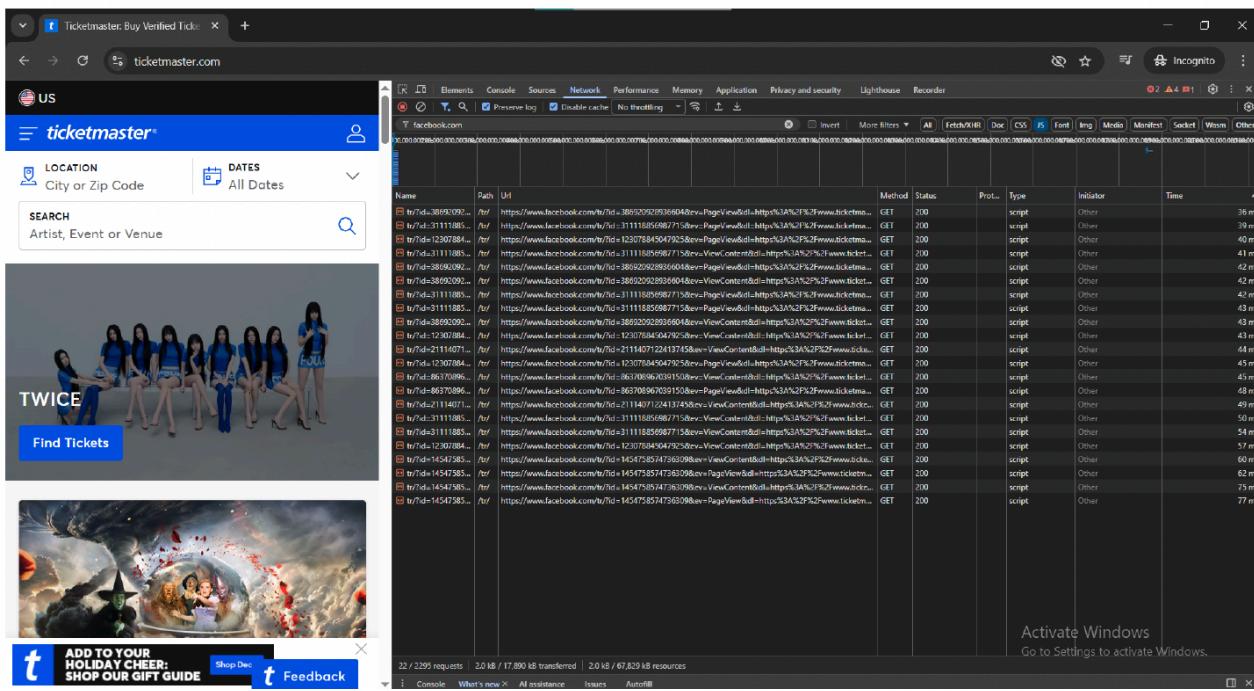
26

27

28 // /

1 **Figure 12:**
2

148. Figures 9 through 12 together document the complete technical operation
 14 of the Google Trackers across the browser, application, and network layers. Figure 9
 15 captures the initiation layer, showing that Google Tag Manager and related analytics and
 16 advertising code execute automatically at page load and identify the page context and
 17 referrer source. Figure 10 captures the signaling layer, showing that detailed page,
 18 device, and session metadata is packaged into Google Analytics payloads generated at
 19 load time. Figure 11 captures the transmission layer, confirming that the same visit
 20 generates live outbound requests to Google Ads / DoubleClick infrastructure carrying
 21 identifiers and routing metadata. Figure 12 captures the routing layer, independently
 22 corroborating that the user's device resolves Google domains and routes encrypted
 23 traffic to Google-controlled IP addresses during the same sequence. Taken together,
 24 these figures establish an end-to-end chain—from code execution, to data generation, to
 25 off-device transmission, to network routing—demonstrating that the Google Trackers
 26 operate as a coordinated process that captures and transmits non-content dialing, routing,
 27 addressing, and signaling information during ordinary use of the Website.


1 149. As shown by the foregoing, the Google Trackers constitute at least a
2 *process* within the meaning of California Penal Code § 638.51 because they are software
3 mechanisms that automatically execute within the user’s browser and capture and
4 transmit dialing, routing, addressing, and signaling information to Google-controlled
5 servers. The Google Trackers also constitute at least a *device* because their operation
6 depends on execution within the user’s computing hardware, including the browser,
7 operating system, and network interface, to generate and transmit signaling information
8 associated with the user’s visit.

9 150. Defendant did not obtain a court order authorizing the installation or use of
10 a pen register or trap-and-trace device or process and did not obtain Plaintiff’s or the
11 Class Members’ consent for the deployment of the Google Trackers or for the capture
12 and transmission of dialing, routing, addressing, and signaling information to Google.

13 **2. *The Facebook Tracker***

14 151. Defendant embedded the Facebook tracking technology known as the Meta
15 Pixel (the “Facebook Tracker”) on the Website. The Facebook Tracker executes
16 automatically when a user loads Ticketmaster’s pages and causes the user’s browser to
17 transmit dialing, routing, addressing, and signaling information to Meta-controlled
18 servers without any user interaction. The information transmitted includes page URLs,
19 referrer paths, timestamps, browser and device characteristics, and Meta-assigned
20 identifiers generated as part of Meta’s advertising and measurement infrastructure.

21 152. Figure 13 is a Chrome DevTools Network capture showing Ticketmaster
22 triggering multiple Facebook Pixel requests immediately upon page load, including
23 requests associated with PageView and ViewContent events. The capture reflects
24 requests sent to <https://www.facebook.com/tr/> containing event parameters and page-
25 specific URLs, with timestamps occurring within milliseconds of page load and prior to
26 any user interaction. This figure demonstrates that Meta Pixel code loads automatically
27 and transmits navigation and content-exposure signals as part of the Website’s initial
28 rendering process.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Figure 13:

153. Figure 14 is a Chrome DevTools payload capture revealing the parameters transmitted in a Facebook Pixel request generated during page load. The payload includes the Meta Pixel ID, event type, full Ticketmaster URL, screen dimensions, timestamp values, and the _fbp browser identifier assigned by Meta. These values collectively identify the user's device environment and the specific content accessed on the Website and are transmitted automatically without any action by the user.

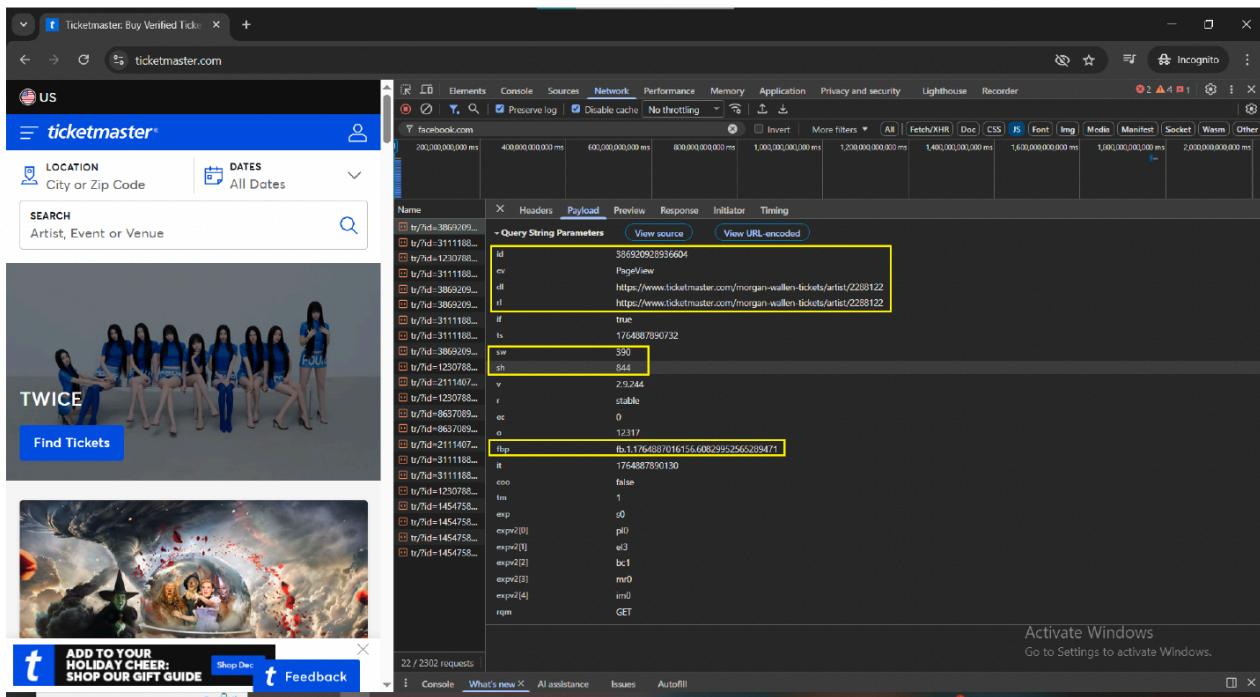
154. *Figure 14* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

155. *Figure 15* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

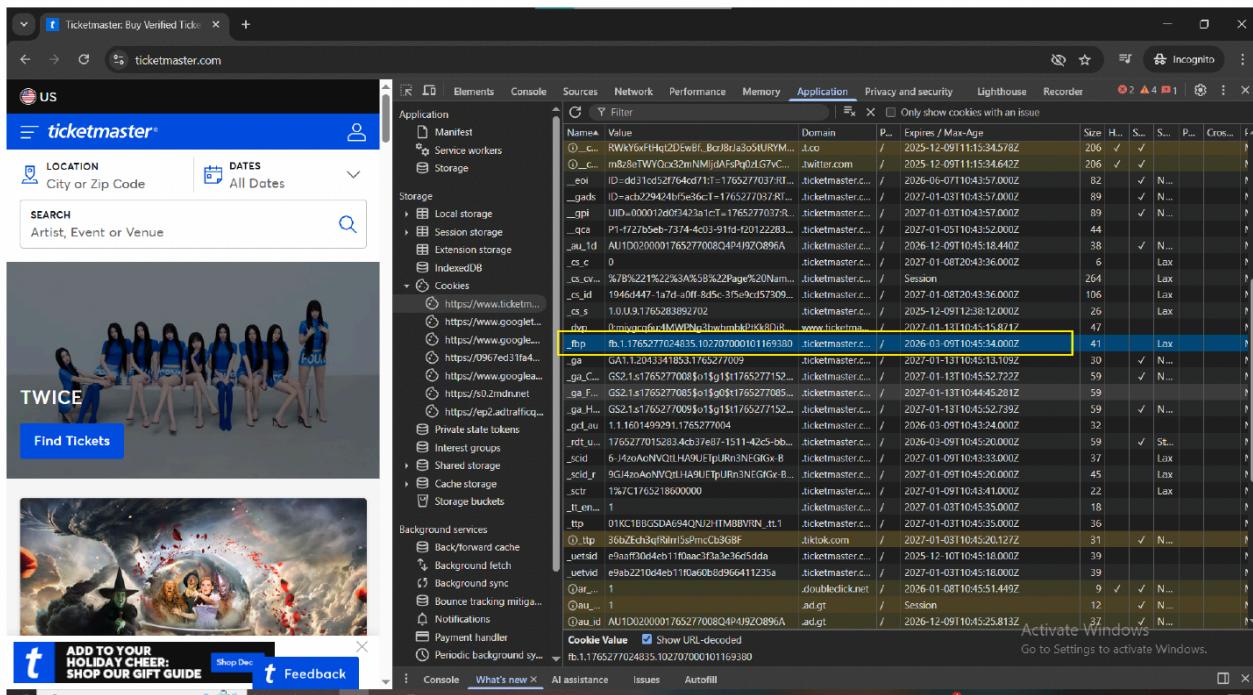
156. *Figure 16* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

157. *Figure 17* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

158. *Figure 18* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

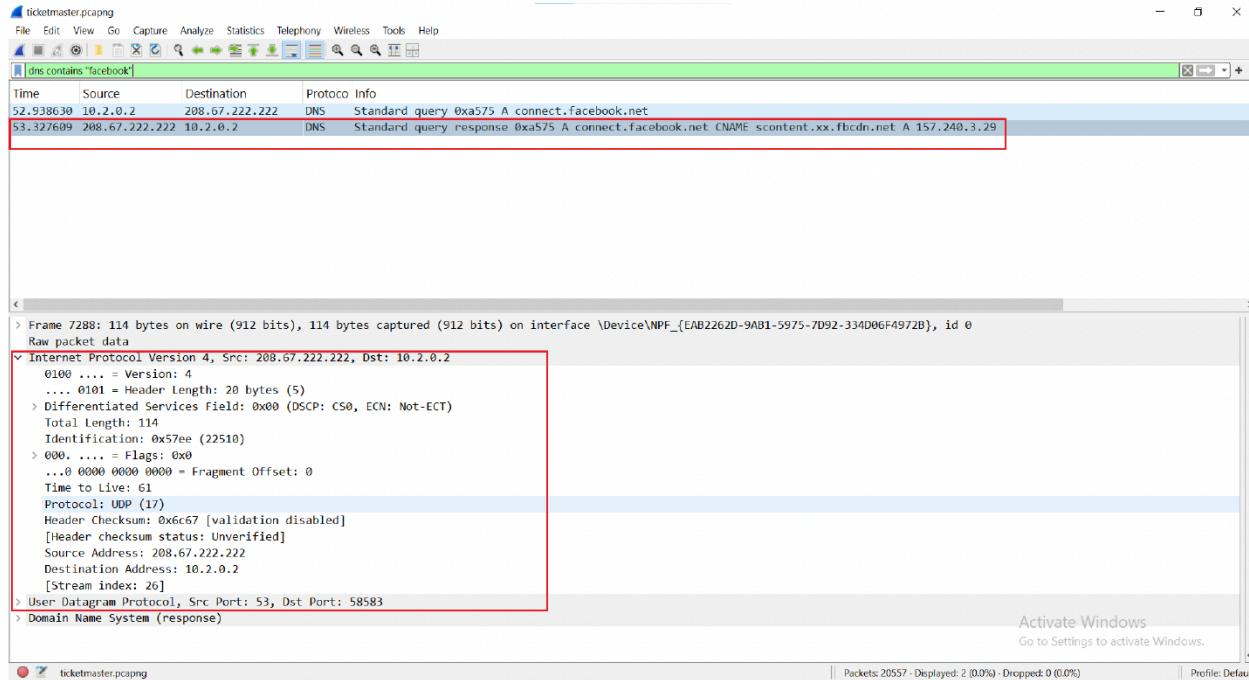

159. *Figure 19* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

160. *Figure 20* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.


161. *Figure 21* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

162. *Figure 22* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.

163. *Figure 23* is a screenshot of a browser showing a search results page for the artist "TWICE" on the Ticketmaster website. The page includes a banner image of the group, a "Find Tickets" button, and a "Feedback" link. The Network tab in the Chrome DevTools interface is open, showing a list of network requests. The requests are primarily GET requests from "ticketmaster.com" to "facebook.com" with various parameters, indicating a data exchange between the two sites. The bottom status bar shows 22 / 299 requests, 2.0 kB / 17,890 kB transferred, and 2.0 kB / 67,829 kB resources. A watermark for "Activate Windows" with the text "Go to Settings to activate Windows" is visible in the bottom right corner.


1
2 **Figure 14:**
3
4
5
6
7
8
9
10
11
12
13

14 154. Figure 15 is a Chrome DevTools Application capture showing the `_fbp`
 15 cookie present in the user's browser prior to any consent. The cookie is stored under
 16 Ticketmaster's domain, contains a Meta-generated persistent browser identifier, and is
 17 assigned a multi-month expiration period. This figure demonstrates that Meta assigns
 18 and maintains a persistent identifier associated with the user's browser during ordinary
 19 use of the Website, enabling continuity of identification across sessions.
 20 // /
 21
 22
 23
 24 // /
 25
 26
 27
 28 // /

1
2
3
4 **Figure 15:**
5
6
7
8
9
10
11
12
13

14 155. Figure 16 is a Wireshark capture showing DNS resolution and network
 15 routing associated with Meta domains contacted during the session, including
 16 connect.facebook.net. The capture identifies the client device initiating DNS queries and
 17 the resolution of those queries to Meta-controlled IP addresses. This network-layer
 18 evidence corroborates that the Website-initiated Facebook Pixel requests observed in the
 19 browser are routed off the user's device to Meta infrastructure during the initial page-
 20 load sequence.

21 // /
 22 // /
 23 // /
 24 // /
 25 // /
 26 // /
 27 // /
 28 // /

1 **Figure 16:**
2

156. Figures 13 through 16 together document the complete technical operation
 14 of the Facebook Tracker across the browser, application, and network layers. Figure 13
 15 captures the initiation layer, showing that Meta Pixel code executes automatically at
 16 page load and transmits page-specific event data without user interaction. Figure 14
 17 captures the signaling layer, showing that detailed page context, device attributes,
 18 timestamps, and Meta-assigned identifiers are packaged into Pixel payloads generated
 19 during the visit. Figure 15 captures the identification layer, showing the creation and
 20 presence of a persistent Meta browser identifier associated with the visit. Figure 16
 21 captures the routing layer, independently corroborating that the user's device resolves
 22 Meta domains and routes traffic to Meta-controlled IP addresses during the same
 23 sequence. Taken together, these figures establish an end-to-end chain—from code
 24 execution, to data generation, to off-device transmission, to network routing—
 25 demonstrating that the Facebook Tracker operates as a coordinated process that captures
 26 and transmits non-content dialing, routing, addressing, and signaling information during
 27 ordinary use of the Website.

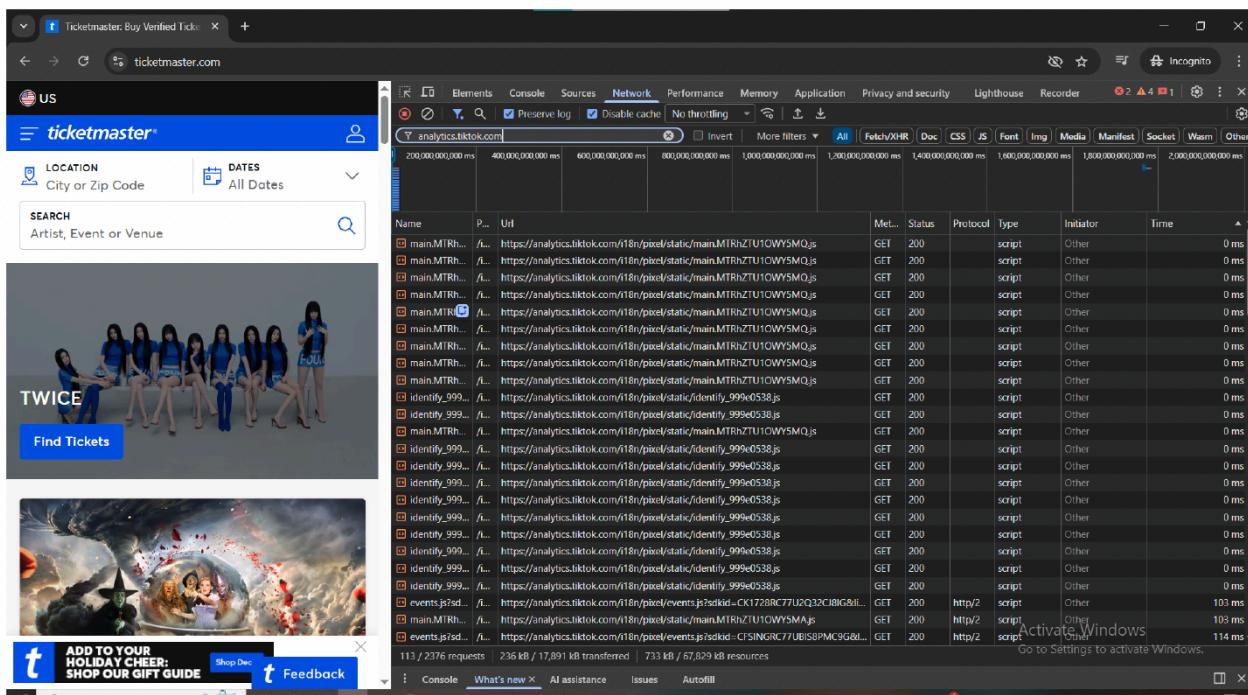
28 157. As shown by the foregoing, the Facebook Tracker constitutes at least a

1 *process* within the meaning of California Penal Code § 638.51 because it is a software
2 mechanism that automatically captures and transmits dialing, routing, addressing, and
3 signaling information to a third party. It also constitutes at least a *device* because its
4 operation depends on execution within the user's browser and computing hardware.

5 158. Defendant did not obtain a court order authorizing the installation or use of
6 a pen register or trap-and-trace device or process and did not obtain Plaintiff's or the
7 Class Members' consent for the deployment of the Facebook Tracker or for the capture
8 and transmission of dialing, routing, addressing, and signaling information to Meta.

9 **3. *The TikTok Tracker***

10 159. Defendant embedded TikTok tracking technologies, including the TikTok
11 Pixel and associated analytics scripts (the "TikTok Tracker"), on the Website. The
12 TikTok Tracker executes automatically when a user loads Ticketmaster's pages and
13 causes the user's browser to transmit dialing, routing, addressing, and signaling
14 information to TikTok-controlled servers without any user interaction. The information
15 transmitted includes page URLs, referrer paths, timestamps, browser and device
16 characteristics, and TikTok-assigned identifiers generated as part of TikTok's analytics
17 and advertising infrastructure.


18 160. Figure 17 is a Chrome DevTools Network capture showing TikTok
19 analytics scripts and pixel endpoints loading automatically upon page load, including
20 requests to analytics.tiktok.com/i18n/pixel/static/, analytics.tiktok.com/pixel/events.js,
21 and related identity and analytics modules. The timestamps reflect execution within the
22 first milliseconds of page load, before any user interaction. This figure demonstrates that
23 TikTok's tracking code is invoked automatically as part of the Website's initial
24 rendering and begins generating and transmitting signaling information immediately.

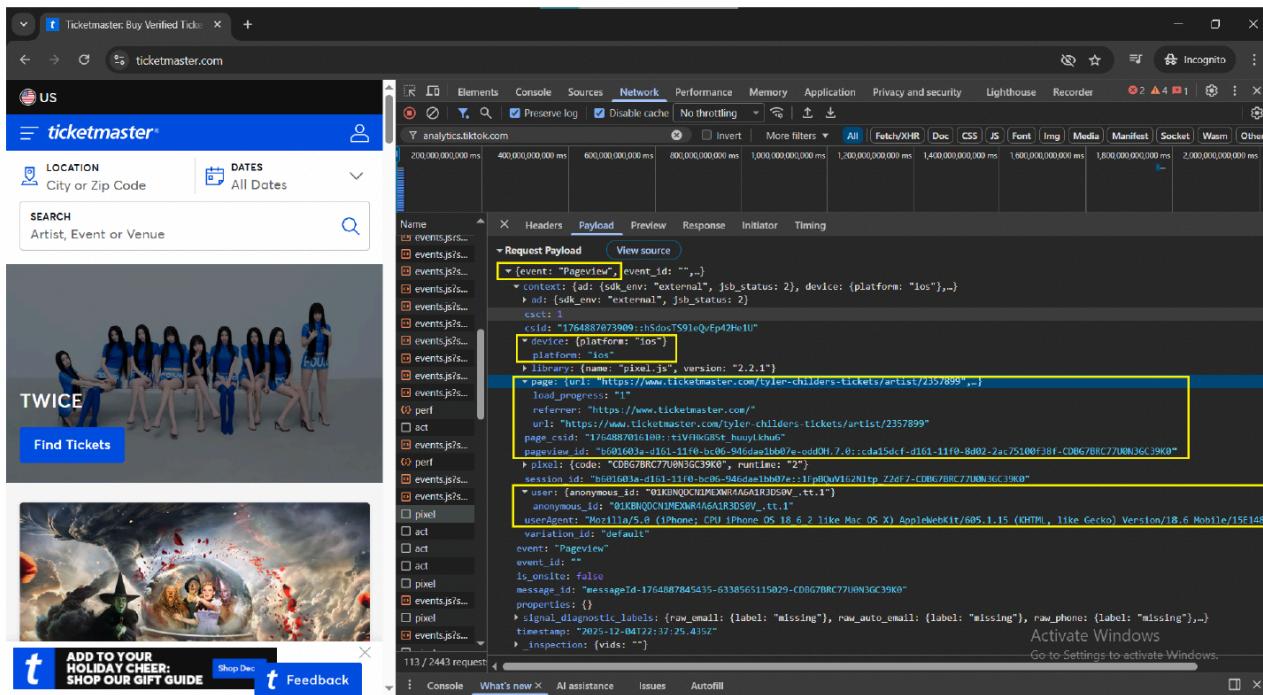
25 // /

26

27

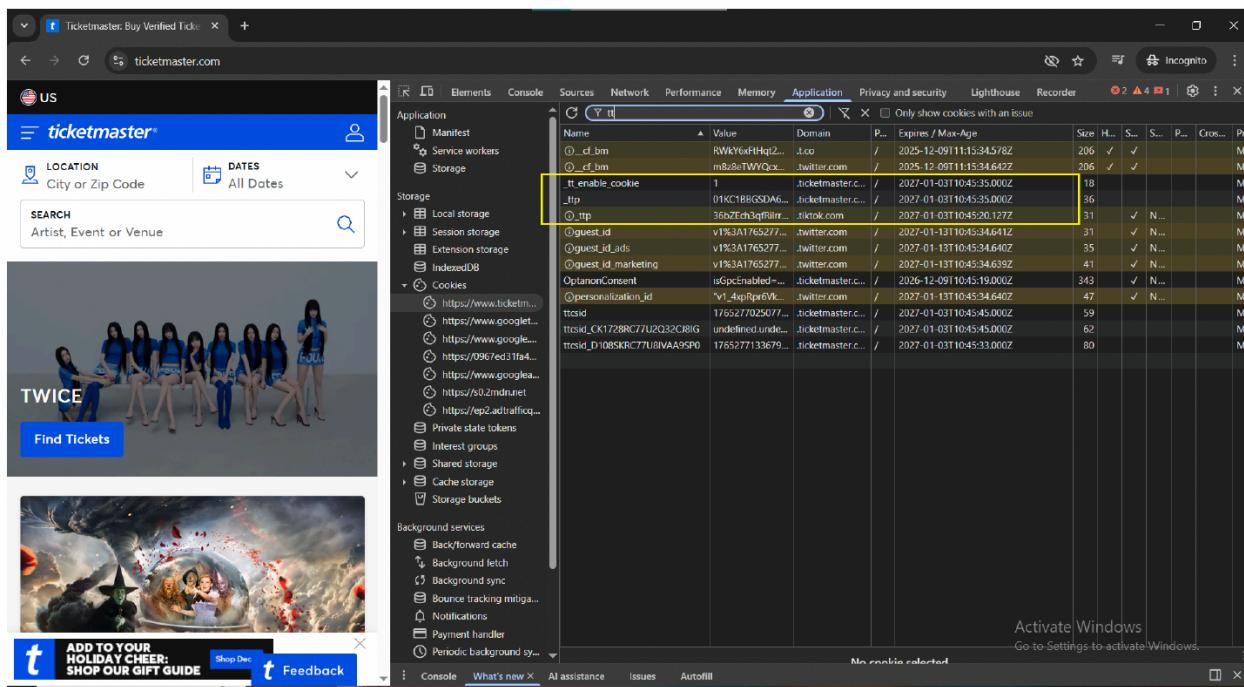
28 // /

1
2
3
4
5
6
7
8
9
10
11
12
13
Figure 17:


14 161. Figure 18 is a Chrome DevTools payload capture showing the contents of
 15 a TikTok Pixel Pageview event transmitted during page load. The JSON payload
 16 includes the event type, TikTok-generated session and event identifiers, full
 17 Ticketmaster page URL and referrer, timestamped engagement fields, platform
 18 information, and a complete user-agent string identifying the device and operating
 19 environment. These values collectively identify the user's device and precisely describe
 20 the content accessed on the Website and are transmitted automatically without any
 21 affirmative action by the user.

22 ///

23 ///


25 ///

27 ///

1
2
3
4
5
6
7
8
9
10
11
12
13
Figure 18:

14 162. Figure 19 is a Chrome DevTools Application capture showing TikTok
 15 identifiers present in the user's browser prior to any consent. The capture reflects the
 16 presence of the `_ttt` cookie, TikTok's persistent browser identifier, and related
 17 configuration values stored with extended expiration periods. This figure demonstrates
 18 that TikTok assigns and maintains a persistent identifier associated with the user's
 19 browser during ordinary use of the Website, enabling continuity of identification across
 20 sessions.

21 //
 22 //
 23 //
 24 //
 25 //
 26 //
 27 //
 28 //

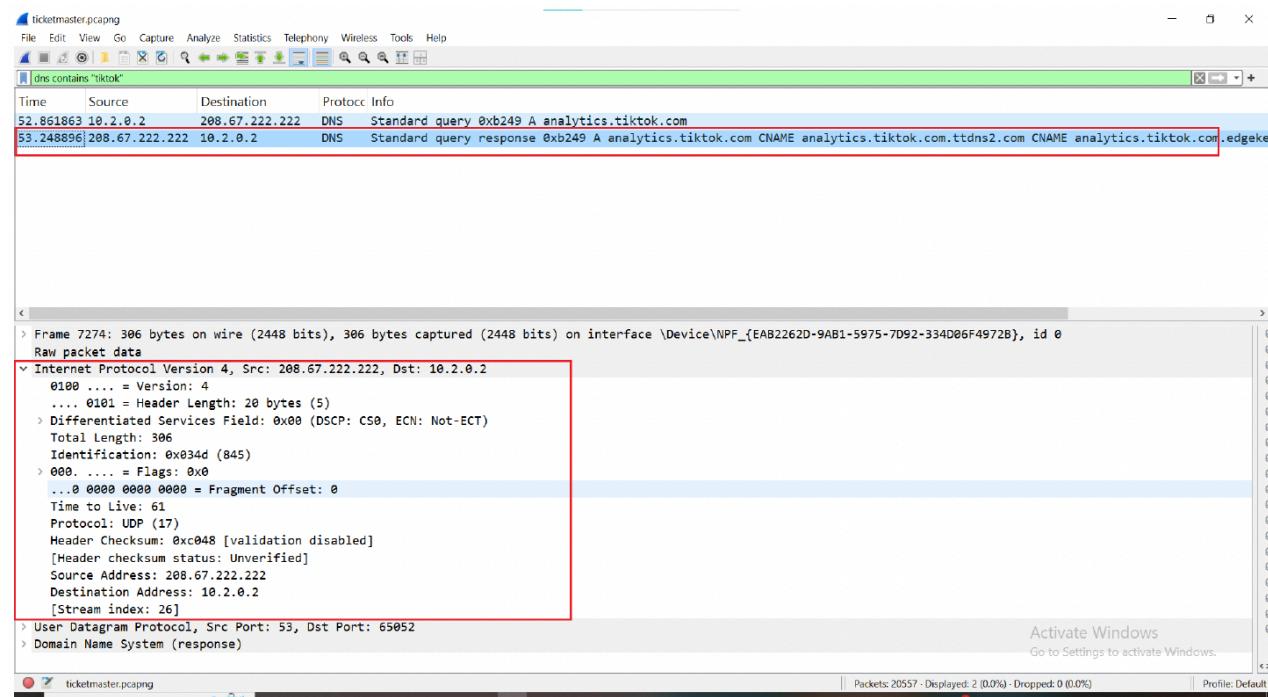
1
2
3
4 **Figure 19:**
5
6
7
8
9
10
11
12
13

14 163. Figure 20 is a Wireshark capture showing DNS resolution and network
 15 routing associated with TikTok domains contacted during the session, including
 16 analytics.tiktok.com. The capture identifies the client device initiating DNS queries and
 17 the resolution of those queries to TikTok-controlled infrastructure. This network-layer
 18 evidence corroborates that the Website-initiated TikTok requests observed in the
 19 browser are routed off the user's device to TikTok servers during the initial page-load
 20 sequence.

21 ///

22 ///

23 ///


24 ///

25 ///

26 ///

27 ///

28 ///

1 **Figure 20:**
2

14 164. Figures 17 through 20 together document the complete technical operation
 15 of the TikTok Tracker across the browser, application, and network layers. Figure 17
 16 captures the initiation layer, showing that TikTok analytics and pixel code execute
 17 automatically at page load. Figure 18 captures the signaling layer, showing that detailed
 18 page context, timestamps, device attributes, and TikTok-generated identifiers are
 19 packaged into event payloads generated during the visit. Figure 19 captures the
 20 identification layer, showing the presence of a persistent TikTok browser identifier
 21 associated with the visit. Figure 20 captures the routing layer, independently
 22 corroborating that the user's device resolves TikTok domains and routes traffic to
 23 TikTok-controlled IP addresses during the same sequence. Taken together, these figures
 24 establish an end-to-end chain—from code execution, to data generation, to off-device
 25 transmission, to network routing—demonstrating that the TikTok Tracker operates as a
 26 coordinated process that captures and transmits non-content dialing, routing, addressing,
 27 and signaling information during ordinary use of the Website.

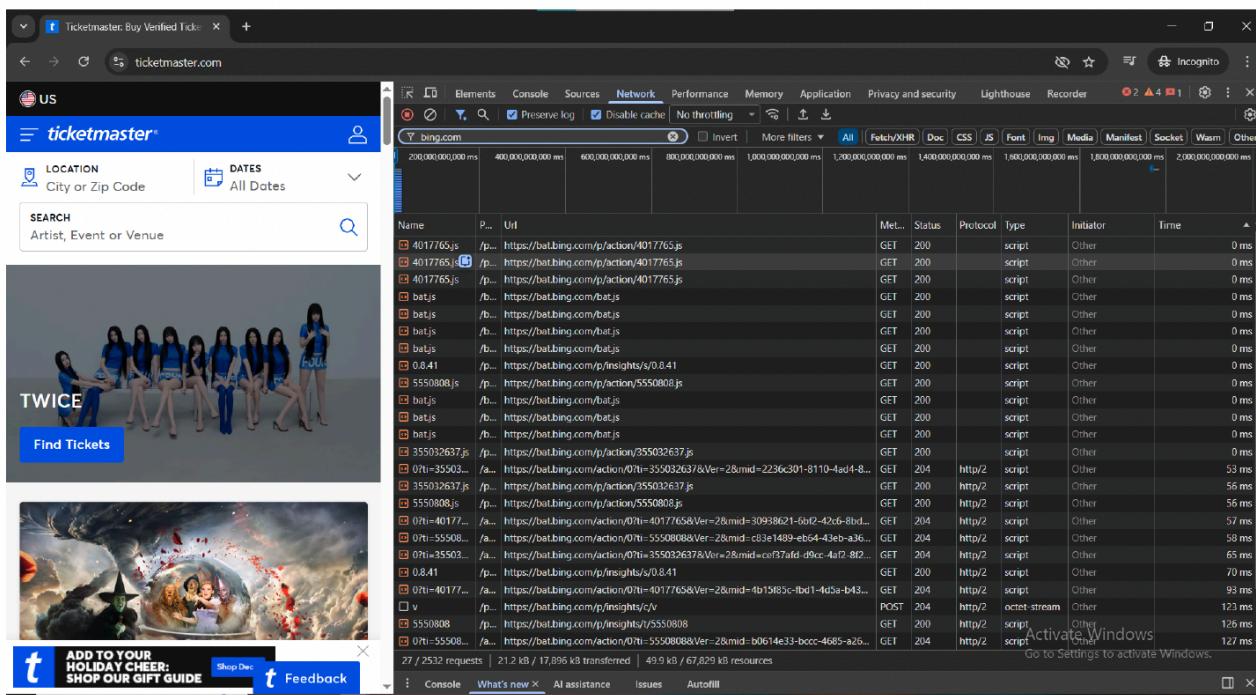
28 165. As shown by the foregoing, the TikTok Tracker constitutes at least a

1 process within the meaning of California Penal Code § 638.51 because it is a software
2 mechanism that automatically captures and transmits dialing, routing, addressing, and
3 signaling information to a third party. It also constitutes at least a *device* because its
4 operation depends on execution within the user's browser and computing hardware.

5 166. Defendant did not obtain a court order authorizing the installation or use of
6 a pen register or trap-and-trace device or process and did not obtain Plaintiff's or the
7 Class Members' consent for the deployment of the TikTok Tracker or for the capture
8 and transmission of dialing, routing, addressing, and signaling information to TikTok.

9 **4. The Microsoft Bing Ads Tracker**

10 167. Defendant embedded Microsoft Bing advertising and analytics
11 technologies, including Microsoft's Universal Event Tracking ("UET") system (the
12 "Bing Tracker"), on the Website. The Bing Tracker executes automatically when a user
13 loads Ticketmaster's pages and causes the user's browser to transmit dialing, routing,
14 addressing, and signaling information to Microsoft-controlled servers without any user
15 interaction. The information transmitted includes page URLs, referrer paths, timestamps,
16 browser and device characteristics, and Microsoft-assigned identifiers generated as part
17 of Microsoft's advertising and measurement infrastructure.


18 168. Figure 21 is a Chrome DevTools Network capture showing Microsoft Bing
19 tracking requests loading automatically upon page load, including requests to
20 bat.bing.com/bat.js, bat.bing.com/action, and bat.bing.com/insights. The timestamps
21 reflect execution within the first milliseconds of page load, before any user interaction.
22 This figure demonstrates that Microsoft's UET tracking engine is invoked automatically
23 as part of the Website's initial rendering and begins generating and transmitting
24 signaling information immediately.

25 // /

26

27

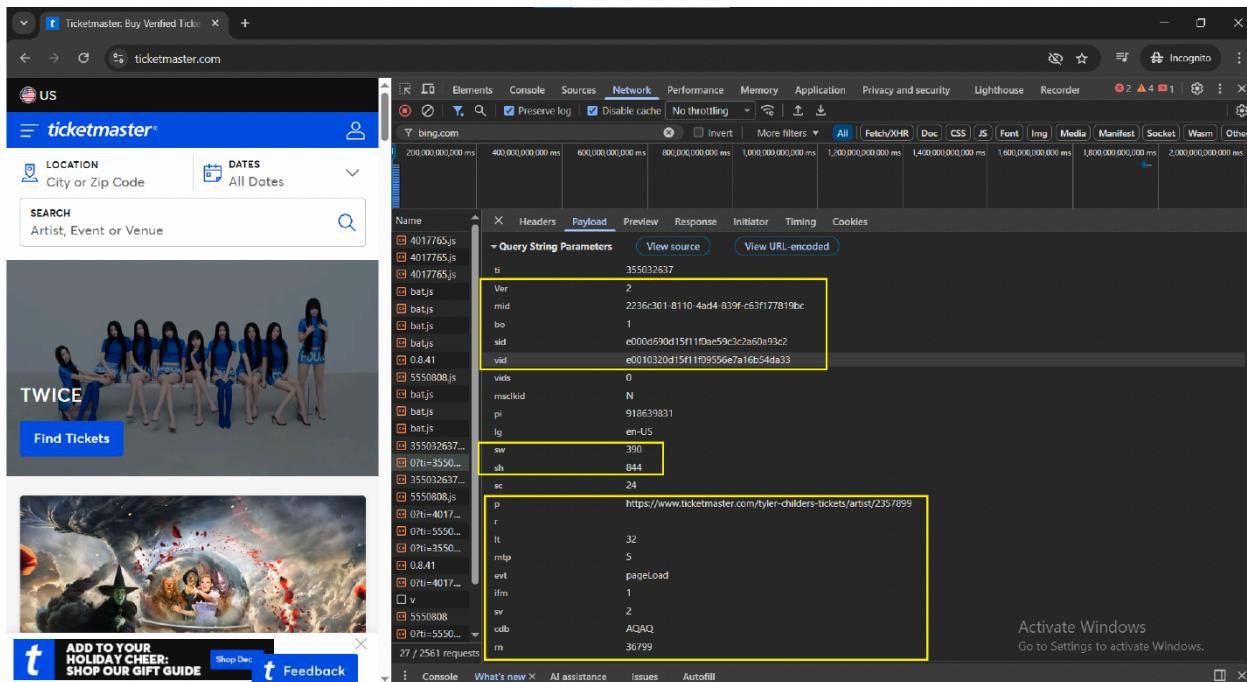
28 // /

1
2
3
4 **Figure 21:**
5
6
7
8
9
10
11
12
13

14 169. Figure 22 is a Chrome DevTools payload capture showing the contents of
15 a Microsoft UET event transmitted during page load. The payload includes Microsoft-
16 assigned identifiers such as mid, vid, and sid, screen dimensions, locale information, full
17 Ticketmaster page URL, event metadata, and timestamped values. These parameters
18 collectively identify the user's device environment and the specific page accessed on the
19 Website and are transmitted automatically without any affirmative action by the user.

20 // /

21


22

23 // /

25

27 // /

28

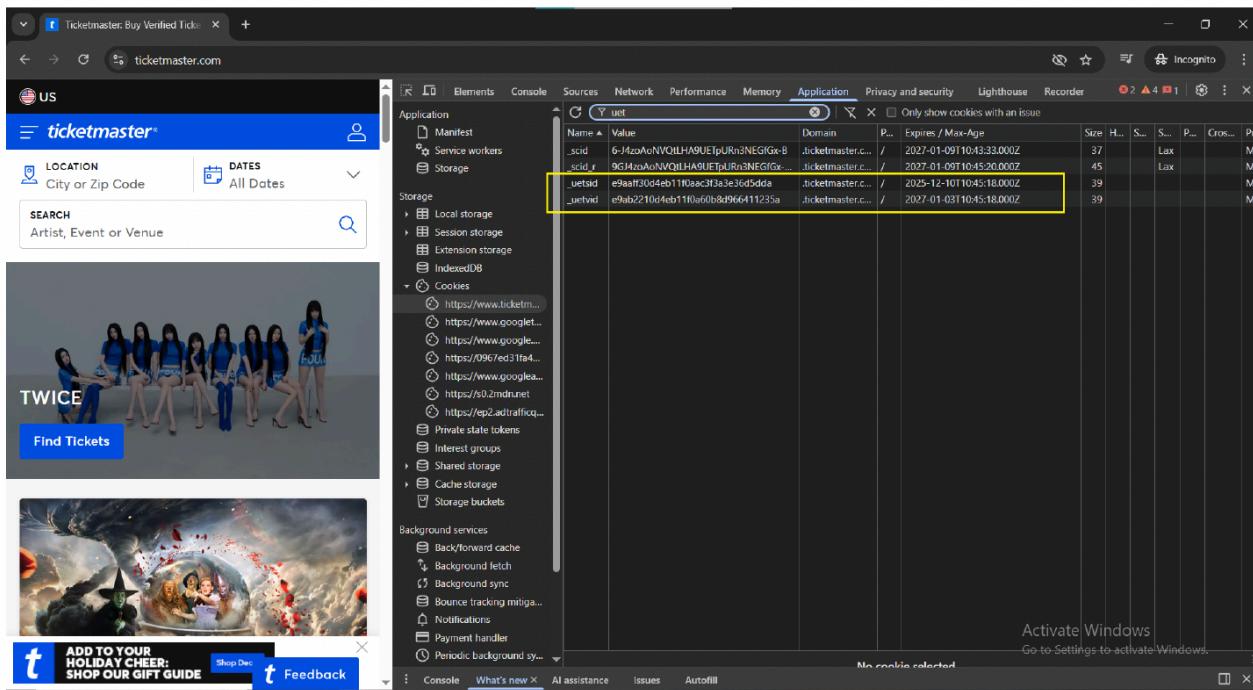
1 **Figure 22:**
2

14 170. Figure 23 is a Chrome DevTools Application capture showing Microsoft
 15 UET cookies present in the user's browser prior to any consent, including `_uetvid` and
 16 `_uetssid`. These cookies contain persistent and session-level identifiers assigned by
 17 Microsoft and are configured with extended expiration periods. This figure demonstrates
 18 that Microsoft assigns and maintains identifiers associated with the user's browser
 19 during ordinary use of the Website, enabling recognition across sessions.

20 // /

21

22


23 // /

24

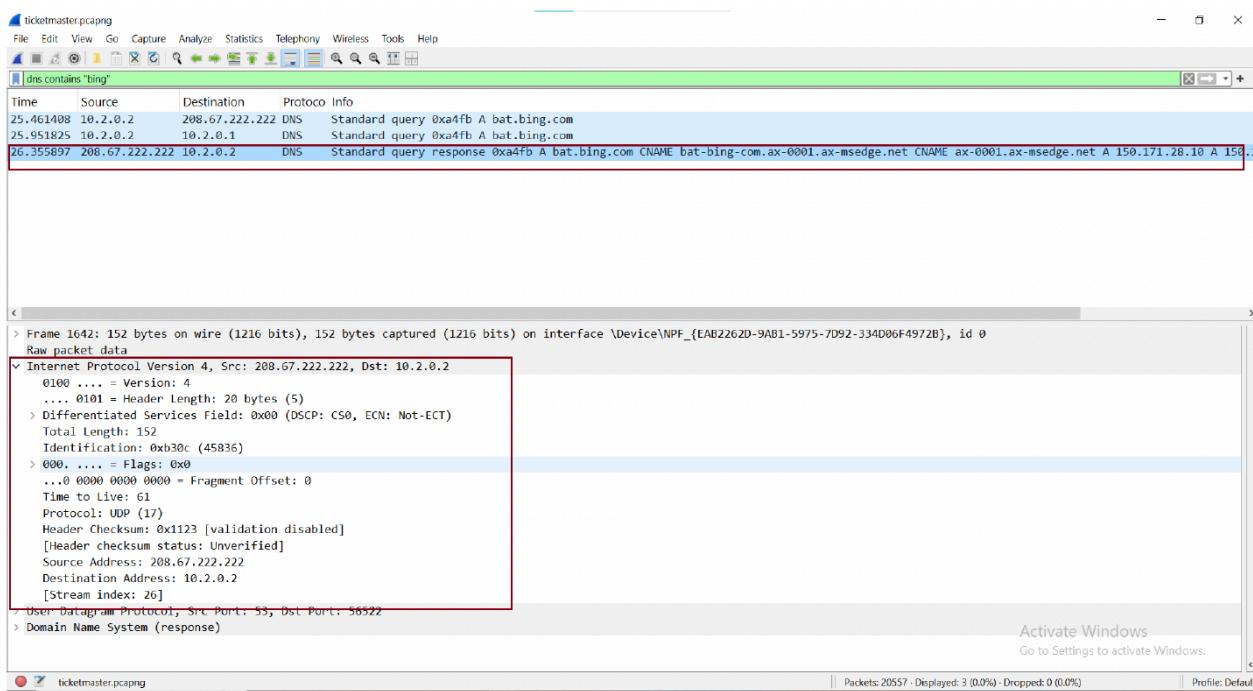
25

26

27 // /

1
2
3
4 **Figure 23:**
5
6
7
8
9
10
11
12
13

14 171. Figure 24 is a Wireshark capture showing DNS resolution and network
 15 routing associated with Microsoft Bing tracking domains contacted during the session,
 16 including bat.bing.com. The capture identifies the client device initiating DNS queries
 17 and the resolution of those queries to Microsoft-controlled infrastructure. This network-
 18 layer evidence corroborates that the Website-initiated Bing tracking requests observed
 19 in the browser are routed off the user's device to Microsoft servers during the initial
 20 page-load sequence.


21 ///

22 ///

23 ///

24 ///

25 ///

1 **Figure 24:**
2

14 172. Figures 21 through 24 together document the complete technical operation
 15 of the Bing Tracker across the browser, application, and network layers. Figure 21
 16 captures the initiation layer, showing that Microsoft's UET scripts execute automatically
 17 at page load. Figure 22 captures the signaling layer, showing that detailed page context,
 18 timestamps, device attributes, and Microsoft-assigned identifiers are packaged into UET
 19 event payloads generated during the visit. Figure 23 captures the identification layer,
 20 showing the presence of persistent and session-level Microsoft identifiers associated
 21 with the visit. Figure 24 captures the routing layer, independently corroborating that the
 22 user's device resolves Microsoft tracking domains and routes traffic to Microsoft-
 23 controlled IP addresses during the same sequence. Taken together, these figures establish
 24 an end-to-end chain—from code execution, to data generation, to off-device
 25 transmission, to network routing—demonstrating that the Bing Tracker operates as a
 26 coordinated process that captures and transmits non-content dialing, routing, addressing,
 27 and signaling information during ordinary use of the Website.

28 173. As shown by the foregoing, the Bing Tracker constitutes at least a *process*

1 within the meaning of California Penal Code § 638.51 because it is a software
2 mechanism that automatically captures and transmits dialing, routing, addressing, and
3 signaling information to a third party. It also constitutes at least a *device* because its
4 operation depends on execution within the user's browser and computing hardware.

5 174. Defendant did not obtain a court order authorizing the installation or use of
6 a pen register or trap-and-trace device or process and did not obtain Plaintiff's or the
7 Class Members' consent for the deployment of the Bing Tracker or for the capture and
8 transmission of dialing, routing, addressing, and signaling information to Microsoft.

9 VI. CLASS ALLEGATIONS

10 175. Plaintiff brings this action individually and on behalf of all others similarly
11 situated (the "Class" or "Class Members") defined as follows:

12 All persons within California whose browser was subject to installation,
13 execution, embedding, or injection of the Trackers by the Defendant's Website
14 during the relevant statute of limitations period.

15 176. **NUMEROSITY:** Plaintiff does not know the number of Class Members
16 but believes the number to be in the thousands, if not more. The exact identities of Class
17 Members can be ascertained by the records maintained by Defendant.

18 177. **COMMONALITY:** Common questions of fact and law exist as to all
19 Class Members and predominate over any questions affecting only individual members
20 of the Class. Such common legal and factual questions, which do not vary between Class
21 members, and which may be determined without reference to the individual
22 circumstances of any Class Member, include but are not limited to the following:

- 23 • Whether Defendant installed, executed, embedded, or injected the Trackers on
24 the Website;
- 25 • Whether the Trackers are each a pen register and/or trap and trace device as
26 defined by law;
- 27 • Whether Plaintiff and Class Members are subject to same tracking policies and
28 practices;

- 1 • Whether Defendant violated CIPA;
- 2 • Whether Plaintiff and Class Members are entitled to statutory damages;
- 3 • Whether Class Members are entitled to injunctive relief;
- 4 • Whether Class Members are entitled to disgorgement of data unlawfully
- 5 obtained.
- 6 • Whether the Defendant's conduct violates the California Constitution;
- 7 • Whether the Defendant's conduct constitutes an intrusion upon seclusion;
- 8 • Whether the Defendant's conduct constitutes an unlawful, misleading,
- 9 deceptive or fraudulent business practice; and
- 10 • Whether Plaintiff and the Class Members are entitled to equitable relief for
- 11 unjust enrichment.

12 178. **TYPICALITY:** As a person who visited Defendant's Website and whose
13 outgoing electronic information was surreptitiously collected by the Trackers, Plaintiff
14 is asserting claims that are typical of the Class Members. Plaintiff's experience with the
15 Trackers is typical to Class Members.

16 179. **ADEQUACY:** Plaintiff will fairly and adequately protect the interests of
17 the members of the Class. Plaintiff has retained attorneys experienced in class action
18 litigation. All individuals with interests that are actually or potentially adverse to or in
19 conflict with the Class or whose inclusion would otherwise be improper are excluded.

20 180. **SUPERIORITY:** A class action is superior to other available methods of
21 adjudication because individual litigation of the claims of all Class Members is
22 impracticable and inefficient. Even if every Class Member could afford individual
23 litigation, the court system could not. It would be unduly burdensome to the courts in
24 which individual litigation of numerous cases would proceed. Individualized litigation
25 also presents a potential for inconsistent or contradictory judgments.

26 ///

27

28 ///

VII. FIRST CAUSE OF ACTION

Violations of Cal. Penal Code § 638.51

By Plaintiff and the Class Members Against All Defendants

181. Plaintiff reasserts and incorporates by reference the allegations set forth in each preceding paragraph as though fully set forth herein.

182. Plaintiff brings this cause of action individually and on behalf of the members of the proposed Class against Defendant.

183. Defendant uses a pen register device or process and/or a trap and trace device or process on its Website by deploying the Trackers because the Trackers are designed to capture the IP address, User Information, and other information such as the phone number, email, routing, addressing and/or other signaling information of website visitors.

184. The Trackers recorded Plaintiff's dialing, routing, addressing, and signaling information in real time, automatically transmitting this dialing, routing, addressing and signaling data to multiple third-party ad-tech endpoints before the Webpage fully loaded.

185. Defendant did not obtain consent from Plaintiff or any of the Class Members before using pen registers or trap and trace devices to locate or identify users of its Website and has thus violated CIPA. CIPA imposes civil liability and statutory penalties for violations of § 638.51. Cal. Penal Code § 637.2; *Moody v. C2 Educational Systems, Inc.*, No. 2:24-cv-04249-RGK-SK, 2024 U.S. Dist. LEXIS 132614 (C.D. Cal. July 25, 2024).

VIII. SECOND CAUSE OF ACTION

Violations of Cal. Constitution Article I § 1

By Plaintiff and the Class Members Against All Defendants

186. Plaintiff reasserts and incorporates by reference the allegations set forth in each preceding paragraph as though fully set forth herein.

187. Plaintiff brings this cause of action individually and on behalf of the members of the proposed Class against Defendant.

1 188. Article I, Section 1 of the California Constitution guarantees each
2 individual an inalienable right to privacy. This constitutional provision supports a private
3 right of action against both governmental and private actors who engage in conduct that
4 constitutes a serious invasion of privacy.

5 189. Plaintiff and the Class Members possess a legally protected privacy interest
6 in the confidentiality of their online behavior, communications metadata, and identifying
7 information, including but not limited to: IP address, browser details, session identifiers,
8 page visit patterns, and clickstream behavior.

9 190. Plaintiff and the Class Members had a reasonable expectation that their
10 activity on Defendant's website, including what pages were visited, what content was
11 interacted with, and when, would not be secretly tracked and transmitted to third parties
12 via embedded surveillance code.

13 191. Without Plaintiff's or the Class Members' knowledge or consent,
14 Defendant caused the Trackers to be deployed on the Website. The Trackers secretly
15 transmitted Plaintiff's digital signaling data, addressing information (e.g., URLs
16 accessed), and routing metadata (e.g., timestamps and referral paths) to the Third Parties,
17 enabling behavioral profiling and cross-site identification.

18 192. Defendant's conduct constitutes a serious and egregious invasion of
19 Plaintiff's and the Class Members' informational privacy, far exceeding any routine or
20 incidental data handling. The deployment of real-time surveillance tools designed to
21 accomplish identity resolution and behavioral mapping is highly offensive to a
22 reasonable person.

23 193. Defendant lacked any legitimate justification for failing to disclose or
24 obtain consent for this data interception and transfer. The magnitude of the privacy
25 intrusion outweighed any speculative or commercial benefit to Defendant.

26 194. As a direct and proximate result of Defendant's actions, Plaintiff and the
27 Class Members have suffered a loss of control over personal data, emotional distress,
28 and a violation of their constitutional right to privacy.

IX. THIRD CAUSE OF ACTION

Violations of Business & Professions Code § 17200

By Plaintiff and the Class Members Against All Defendants

195. Plaintiff realleges and incorporates by reference all preceding paragraphs of this Complaint as though fully set forth herein.

196. Plaintiff brings this cause of action individually and on behalf of the members of the proposed Class against Defendant.

197. This cause of action is brought under California Business & Professions Code § 17200 et seq., which prohibits any unlawful, unfair, or fraudulent business act or practice.

198. Defendant has engaged in unlawful business practices by:

(a) Violating Article I, Section 1 of the California Constitution, which protects individuals from serious invasions of privacy; and

(b) Violating California Penal Code §§ 638.50–638.56, including the unauthorized collection of addressing, signaling, and routing information for user identification and tracking.

199. Defendant has engaged in unfair business practices by embedding the Trackers into the Website and enabling the real-time capture and transmission of Plaintiff's and Class Members' personal and behavioral information, such as IP address, browser details, visited URLs, referrer paths, timestamps, and interaction events, to the Third Parties.

200. The Defendant's practices are contrary to public policy supporting consumer privacy and data autonomy, and the harm it causes to consumers, including loss of control over personal information and risk of profiling, outweighs any legitimate business justification.

201. Defendant has engaged in fraudulent business practices by failing to adequately disclose its data-sharing practices. On information and belief, Defendant omitted material facts from its privacy policy and/or site interface and failed to inform

1 users that their activities would be tracked across the internet and linked to unique
 2 identifiers for advertising and profiling purposes. These omissions were likely to deceive
 3 a reasonable consumer and were intended to obscure the nature and extent of the
 4 surveillance.

5 202. As a direct and proximate result of Defendant's unlawful, unfair, and
 6 fraudulent conduct, Plaintiff and the Class Members have suffered injury in fact and loss
 7 of money or property, including the unauthorized exfiltration and commodification of
 8 valuable personal data. Plaintiff's and Class Members' data, used for targeted
 9 advertising, behavioral modeling, and enrichment by third parties, constitutes digital
 10 property with measurable economic value.

11 203. Plaintiff on behalf of himself and on behalf of the Class Members seeks
 12 injunctive relief to prevent Defendant from continuing its deceptive and unlawful data
 13 tracking practices and to require clear and conspicuous notice and opt-in consent for any
 14 behavioral tracking involving third-party tools. Plaintiff on behalf of himself and on
 15 behalf of the Class Members, also seeks restitution of the value derived from the
 16 unauthorized use of their personal information, attorneys' fees where permitted by law,
 17 and such other and further relief as the Court may deem just and proper.

18 **X. FOURTH CAUSE OF ACTION**

19 **Intrusion Upon Seclusion**

20 ***By Plaintiff and the Class Members Against All Defendants***

21 204. Plaintiff realleges and incorporates by reference all preceding paragraphs
 22 of this Complaint as though fully set forth herein.

23 205. Plaintiff brings this cause of action individually and on behalf of the
 24 members of the proposed Class against Defendant for intrusion upon seclusion, a well-
 25 established common law tort recognized in California, which protects individuals from
 26 intentional invasions of their private affairs in a manner that would be highly offensive
 27 to a reasonable person.

28 206. At all relevant times, Plaintiff and the Class Members had a reasonable

1 expectation of privacy in their online browsing activity, including their interactions with
2 the Website, the specific content viewed, and the behavioral signals generated through
3 use of the website, such as page views, click paths, session timestamps, and form entries.

4 207. Without Plaintiff's or Class Members' knowledge or consent, Defendant
5 intentionally deployed the Trackers on the Website. This tool was engineered to
6 surreptitiously capture and transmit granular behavioral data, including addressing,
7 signaling, and routing information such as IP addresses, URL paths, referrers, device
8 attributes, and mouse activity, to third parties.

9 208. The data collected was detailed and persistent, enabling Third Parties to
10 monitor Plaintiff's and Class Members' conduct across websites, associate that behavior
11 with unique identifiers, and build a behavioral profile of Plaintiff and Class Members
12 for marketing and data monetization purposes.

13 209. Defendant's actions were intentional, systematic, and designed to operate
14 in a manner undetectable by users. At no point did Defendant provide clear, conspicuous
15 disclosure of this surveillance, nor did it obtain affirmative consent from Plaintiff and
16 Class Members to conduct such monitoring or transmit the collected data to third parties.

17 210. The nature of this covert surveillance, especially its capacity to link online
18 activity to identifiable users, would be highly offensive to a reasonable person,
19 particularly in light of growing public sensitivity to privacy rights and digital
20 surveillance.

21 211. As a direct and proximate result of Defendant's conduct, Plaintiff and the
22 Class Members suffered an invasion of privacy, loss of control over personal
23 information, and emotional harm, including anxiety, indignity, and concern over being
24 unknowingly tracked, profiled, and exposed to targeted advertising based on private
25 digital conduct.

26 212. Defendant's conduct was willful, malicious, and oppressive, thereby
27 justifying the imposition of punitive and exemplary damages.

28 / / /

XI. FIFTH CAUSE OF ACTION

Unjust Enrichment

By Plaintiff and the Class Members Against All Defendants

213. Plaintiff realleges and incorporates by reference all preceding paragraphs of this Complaint as though fully set forth herein.

214. Plaintiff brings this cause of action individually and on behalf of the members of the proposed Class against Defendant for unjust enrichment, asserting that Defendant has been unjustly enriched through the unauthorized and uncompensated acquisition, use, and monetization of Plaintiff's and Class Members' personal data.

215. Plaintiff and the Class Members, while visiting and interacting with the Website, unknowingly conferred a substantial benefit on Defendant by generating digital behavioral data, including but not limited to IP address, device information, browser metadata, URL paths, session timestamps, and interaction signals.

216. Defendant deployed the Trackers without Plaintiff's and Class Members' knowledge or meaningful consent. The data collected was then used by Defendant and/or third parties to conduct behavioral targeting, analytics, and advertising optimization that generated substantial financial value.

217. At no time did Plaintiff and Class Members consent to the commercial exploitation of this data. Nor was Plaintiff and Class Members informed that their online behavior would be tracked and monetized in this manner. Plaintiff and Class Members received no compensation, disclosure, or opportunity to prevent the enrichment conferred upon Defendant.

218. Defendant's retention and use of this benefit was unjust and inequitable. The value of Plaintiff's and Class Members' behavioral data, when compiled, analyzed, and integrated into advertising algorithms or consumer profiling tools, constitutes a marketable asset in the digital economy. Defendant's ability to extract revenue from this asset without disclosure or fair exchange renders its conduct unjust.

219. Under principles of equity and good conscience, Defendant should be

1 required to disgorge all ill-gotten gains and benefits received as a result of its unjust
2 enrichment at Plaintiff's and Class Members' expense.

3 **XII. PRAYER FOR RELIEF**

4 WHEREFORE, Plaintiff prays for the following:

- 5 1. An order certifying the Class, naming Plaintiff as Class
representative, and naming Plaintiff's attorneys as Class counsel;
- 6 2. An order declaring that Defendant's conduct violates CIPA, the
California Constitution, and Business & Professions Code § 17200;
- 7 3. An order declaring that Defendant's conduct unlawfully intrudes
upon the seclusion of Plaintiff and the Class Members;
- 8 4. An order of judgment in favor of Plaintiff and the Class against
Defendant on the cause of action asserted herein;
- 9 5. An order enjoining Defendant's conduct as alleged herein;
- 10 6. Disgorgement of profits resulting from unjust enrichment;
- 11 7. Statutory damages pursuant to CIPA;
- 12 8. Prejudgment interest;
- 13 9. Reasonable attorney's fees and costs; and
- 14 10. All other relief that would be just and proper as a matter of law or
equity.

15 //
16
17
18
19
20
21
22
23
24 //
25
26
27
28 //

1
2 **DEMAND FOR JURY TRIAL**
3

4 Plaintiff hereby demands a trial by jury on all causes of action and issues so
5 triable.
6

7 Respectfully submitted,
8

9 Dated: January 5, 2026
10

11 **NATHAN & ASSOCIATES, APC**
12

13 By: /s/ Reuben D. Nathan
14 Reuben D. Nathan
15 2901 W. Coast Hwy., Suite 200
16 Newport Beach, CA 92663
17 Office: (949) 270-2798
18 Email: rathan@nathanlawpractice.com
19

20 **LAW OFFICES OF ROSS CORNELL, APC**
21 Ross Cornell, Esq. (SBN 210413)
22 P.O. Box 1989 #305
23 Big Bear Lake, CA 92315
24 Office: (562) 612-1708
25 Email: rc@rosscornelllaw.com
26
27

28 *Attorneys for Plaintiff and the Putative Class*