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Abstract

Recent progress in music generation has been remarkably advanced by the state-
of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for
semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the Mu-
sicLM requires processing through these LMs one by one to obtain the fine-grained
acoustic tokens, making it computationally expensive and prohibitive for a real-
time generation. Efficient music generation with a quality on par with MusicLM
remains a significant challenge. In this paper, we present MeLoDy (M for music;
L for LM; D for diffusion), an LM-guided diffusion model that generates music
audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward
passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits
the highest-level LM from MusicLM for semantic modeling, and applies a novel
dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the
conditioning semantic tokens into waveform. DPD is proposed to simultaneously
model the coarse and fine acoustics by incorporating the semantic information
into segments of latents effectively via cross-attention at each denoising step. Our
experimental results suggest the superiority of MeLoDy, not only in its practical
advantages on sampling speed and infinitely continuable generation, but also in its
state-of-the-art musicality, audio quality, and text correlation.
Our samples are available at https://Efficient-MeLoDy.github.io/.

1 Introduction

Music is an art composed of harmony, melody, and rhythm that permeates every aspect of human life.
With the blossoming of deep generative models [1–3], music generation has drawn much attention in
recent years [4–6]. As a prominent class of generative models, language models (LMs) [7, 8] showed
extraordinary modeling capability in modeling complex relationships across long-term contexts
[9–11]. In light of this, AudioLM [3] and many follow-up works [5, 12–14] successfully applied
LMs to audio synthesis. Concurrent to the LM-based approaches, diffusion probabilistic models
(DPMs) [1, 15, 16], as another competitive class of generative models [2, 17], have also demonstrated
exceptional abilities in synthesizing speech [18–20], sounds [21, 22] and music [6, 23].

However, generating music from free-form text remains challenging as the permissible music descrip-
tions can be very diverse and relate to any of the genres, instruments, tempo, scenarios, or even some
subjective feelings. Conventional text-to-music generation models are listed in Table 1, where both
MusicLM [5] and Noise2Music [6] were trained on large-scale music datasets and demonstrated the
state-of-the-art (SOTA) generative performances with high fidelity and adherence to various aspects
of text prompts. Yet, the success of these two methods comes with large computational costs, which
would be a serious impediment to their practicalities. In comparison, Moûsai [23] building upon
DPMs made efficient samplings of high-quality music possible. Nevertheless, the number of their
demonstrated cases was comparatively small and showed limited in-sample dynamics. Aiming for a
feasible music creation tool, a high efficiency of the generative model is essential since it facilitates
interactive creation with human feedback being taken into account as in [24].
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Table 1: A comparison of MeLoDy with conventional text-to-music generation models in the literature.
We use AC to denote whether audio continuation is supported, FR to denote whether the sampling
is faster than real-time on a V100 GPU, VT to denote whether the model has been tested and
demonstrated using various types of text prompts including instruments, genres, and long-form rich
descriptions, and MP to denote whether the evaluation was done by music producers.

Model Prompts Training Data AC FR VT MP
Moûsai [23] Text 2.5k hours of music ✓ ✓ ✗ ✗
MusicLM [5] Text, Melody 280k hours of music ✓ ✗ ✓ ✗
Noise2Music [6] Text 340k hours of music ✗ ✗ ✓ ✗

MeLoDy (Ours) Text, Audio 257k hours of music1 ✓ ✓ ✓ ✓

While LMs and DPMs both showed promising results, we believe the relevant question is not whether
one should be preferred over another but whether we can leverage both approaches with respect to
their individual advantages, e.g., [25]. After analyzing the success of MusicLM, we leverage the
highest-level LM in MusicLM, termed as semantic LM, to model the semantic structure of music,
determining the overall arrangement of melody, rhythm, dynamics, timbre, and tempo. Conditional
on this semantic LM, we exploit the non-autoregressive nature of DPMs to model the acoustics
efficiently and effectively with the help of a successful sampling acceleration technique [26]. All in
all, in this paper, we introduce several novelties that constitute our main contributions:

1. We present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion
model that generates music of competitive quality while reducing 95.7% and 99.6% iterations
of MusicLM to sample 10s and 30s music, being faster than real-time on a V100 GPU.

2. We propose the novel dual-path diffusion (DPD) models to efficiently model coarse and fine
acoustic information simultaneously with a particular semantic conditioning strategy.

3. We design an effective sampling scheme for DPD, which improves the generation quality
over the previous sampling method in [23] proposed for this class of LDMs.

4. We reveal a successful audio VAE-GAN that effectively learns continuous latent representa-
tions, and is capable of synthesizing audios of competitive quality together with DPD.

2 Related Work

Audio Generation Apart from the generation models shown in Table 1, there are also music
generation models [28, 29] that can generate high-quality music samples at high speed, yet they
cannot accept free-form text conditions and can only be trained to specialize in single-genre music,
e.g., techno music in [29]. There also are some successful music generators in the industry, e.g.
Mubert [30] and Riffusion [31], yet, as analyzed in [5], they struggled to compete with MusicLM
in handling free-form text prompts. In a more general scope of audio synthesis, some promising
text-to-audio synthesizers [12, 21, 22] trained with AudioSet [32] also demonstrated to be able to
generate music from free-form text, but the musicality is limited. AudioLM [3] unconditionally
continued piano audios with promising fidelity. Parallel to this work, SoundStorm [33] exceedingly
accelerated the AudioLM with a non-autoregressive decoding scheme [34], such that the acoustic
LM can be decoded in 27 forward passes. In comparison, neglecting the individual cost of networks,
MeLoDy takes 5 to 20 forward passes to generate acoustics of high fidelity, as discussed in Section 5.

Network Architecture The architecture designed for our proposed DPD was inspired by the
dual-path networks used in the context of audio separation, where Luo et al. [35] initiated the idea of
segmentation-based dual-path processing, and triggered a number of follow-up works achieving the
state-of-the-art results [36–40]. Noticing that the objective in diffusion models indeed can be viewed
as a special case of source separation, this kind of dual-path architecture effectually provides us a
basis for simultaneous coarse-and-fine acoustic modeling.

1We focus on non-vocal music data by using an audio classifier [27] to filter out in-house music data with
vocals. Noticeably, generating vocals and instrumental music simultaneously in one model is defective even
in the SOTA works [5, 6] because of the unnaturally sound vocals. While this work aims for generating
production-level music, we improve the fidelity by reducing the tendency of generating vocals.
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3 Background on Audio Language Modeling

This section provides the preliminaries that serve as the basis for our model. In particular, we briefly
describe the audio language modeling framework used in MusicLM.

3.1 Audio Language Modeling with MusicLM

MusicLM [5] mainly follows the audio language modeling framework presented in AudioLM [3],
where audio synthesis is viewed as a language modeling task over a hierarchy of coarse-to-fine audio
tokens. In AudioLM, there are two kinds of tokenization for representing different scopes of audio:

• Semantic Tokenization: K-means over representations from SSL, e.g., w2v-BERT [41];
• Acoustic Tokenization: Neural audio codec, e.g., SoundStream [42].

To better handle the hierarchical structure of the acoustic tokens, AudioLM further separates the
modeling of acoustic tokens into coarse and fine stages. In total, AudioLM defines three LM tasks:
(1) semantic modeling, (2) coarse acoustic modeling, and (3) fine acoustic modeling.

We generally define the sequence of conditioning tokens as c1:Tcnd := [c1, . . . , cTcnd ] and the sequence
of target tokens as u1:Ttgt := [u1, . . . ,uTtgt ]. In each modeling task, a Transformer-decoder language
model parameterized by θ is tasked to solve the following autoregressive modeling problem:

pθ(u1:Ttgt |c1:Tcnd) =

Ttgt∏
j=1

pθ(uj |[c1, . . . , cTcnd ,u1, . . . ,uj−1]), (1)

where the conditioning tokens are concatenated to the target tokens as prefixes. In AudioLM, semantic
modeling takes no condition; coarse acoustic modeling takes the semantic tokens as conditions; fine
acoustic modeling takes the coarse acoustic tokens as conditions. The three corresponding LMs can
be trained in parallel with the ground-truth tokens, but need to be sampled sequentially for inference.

3.1.1 Joint Tokenization of Music and Text with MuLan and RVQ

To maintain the merit of audio-only training, MusicLM relies on MuLan [43], which is a two-tower,
joint audio-text embedding model that can be individually trained with large-scale music data and
weakly-associated, free-form text annotations. The MuLan model is pre-trained to project the music
audio and its corresponding text description into the same embedding space such that the associated
embeddings can be close to each other. In MusicLM, the MuLan embeddings of music and text are
tokenized using a separately learned residual vector quantization (RVQ) [42].

Different from AudioLM, MusicLM employs the MuLan tokens as the additional prefixing tokens, as
in Eq. (1), for the semantic modeling and the coarse acoustic modeling. During training, the audio is
first fed to the MuLan music tower to obtain the music embedding. Then, an RVQ is applied to the
music embedding, resulting in the ground-truth MuLan tokens for conditioning the semantic LM and
the coarse acoustic LM. To generate music from a text prompt, the text embedding obtained from the
MuLan text tower is passed to the same RVQ and is discretized into the inference-time MuLan tokens.
Based on the prefixing MuLan tokens, the semantic tokens, coarse acoustic tokens, and fine acoustic
tokens are subsequently computed to generate high-fidelity music audio adhering to the text prompt.

4 Model Description

The overall training and sampling pipelines of MeLoDy are shown in Figure 1, where, we have three
modules for representation learning: (1) MuLan, (2) Wav2Vec2-Conformer, and (3) audio VAE, and
two generative models: a language model (LM) and a dual-path diffusion (DPD) model, respectively,
for semantic modeling and acoustic modeling. In the same spirit as MusicLM, we leverage LM to
model the semantic structure of music for its promising capability of modeling complex relationships
across long-term contexts [9–11]. Similar to MusicLM, we pre-train a MuLan model to obtain the
conditioning tokens. For semantic tokenization, we opt to use the Wav2Vec2-Conformer model,
which follows the same architecture as Wav2Vec2 [44] but employs the Conformer blocks [45] in
place of the Transformer blocks. The remainder of this section presents our newly proposed DPD
model and the audio VAE-GAN used for DPD model, while other modules overlapped with MusicLM
are described in Appendix B regarding the training and implementation details.
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Figure 1: The training and sampling pipelines of MeLoDy

4.1 Dual-Dath Diffusion: Angle-Parameterized Continuous-Time Latent Diffusion Models

The proposed dual-path diffusion (DPD) model is a variant of diffusion probabilistic models (DPMs)
[1, 15, 46] in continuous-time [16, 47–49]. Instead of directly operating on the raw data x ∼ pdata(x),
with reference to the latent diffusion models (LDMs) [2], we consider a low-dimensional latent
representation z = Eϕ(x), where ϕ is a pre-trained autoencoder that enables reconstruction of the
raw data from the latent: x ≈ Dϕ(z). Here, we use Eϕ to denote the encoder, and Dϕ to denote the
decoder. By working on a low-dimensional latent space, the computational burden of DPMs can
be significantly relieved [2]. We present our audio autoencoder in Section 4.2, which is tailored for
DPMs and performed the stablest in our experiments.

In DPD, we consider a Gaussian diffusion process zt that is fully specified by two strictly positive
scalar-valued, continuously differentiable functions αt, σt [16]: q(zt|z) = N (zt;αtz, σ

2
t I) for any

t ∈ [0, 1]. In the light of [48], we define αt := cos(πt/2) and σt := sin(πt/2) to benefit from
some nice trigonometric properties, i.e., σt =

√
1− α2

t (a.k.a. variance-preserving [16]). By this
definition, zt can be elegantly re-parameterized in terms of angles δ:

zδ = cos(δ)z+ sin(δ)ϵ for any δ ∈ [0, π/2], ϵ ∼ N (0, I). (2)

Note that zδ gets noisier as δ increases from 0 to π/2, which defines the forward diffusion process.

To generate samples, we use a θ-parameterized variational model pθ(zδ−ω|zδ) to invert the diffusion
process by enabling running backward in angle with 0 < ω ≤ δ. Based on this model, we can sample
z from zπ/2 ∼ N (0, I) with T sampling steps, by discretizing π/2 into T segments as follows:

pθ(z|zπ/2) =
∫
zδ1:T−1

T∏
t=1

pθ(zδt−ωt |zδt) dzδ1:T−1
, δt =

{
π
2 −

∑T
i=t+1 ωi, 1 ≤ t < T ;

π
2 , t = T,

(3)

where the angle schedule, denoted by ω1, . . . , ωT , satisfies
∑T

t=1 ωt = π/2. Schneider et al. [23]
proposed a uniform angle schedule: ωt =

π
2T for all t. As revealed in previous scheduling methods

[50, 51] for DPMs, taking larger steps at the beginning of the sampling followed by smaller steps
could improve the quality of samples. Following this strategy, we design a new linear angle schedule,
which empirically gives more stable and higher-quality results, and is written as

ωt =
π

6T
+

2πt

3T (T + 1)
. (4)

We extensively compare this linear angle schedule with the uniform one in [23] in Appendix D.

4.1.1 Multi-Chunk Velocity Prediction for Long-Context Generation

For model training, similar to the setting in [23] for long-context generation, the neural network
is tasked to predict a multi-chunk target vtgt that comprises M chunks of velocities, each having a
different noise scale. Formally speaking, given that z, zδ, ϵ ∈ RL×D with L representing the length
of audio latents and D representing the latent dimensions, we define vtgt := v1 ⊕ · · · ⊕ vM , where

vm := cos(δm)ϵ[Lm−1 : Lm, :]− sin(δm)z[Lm−1 : Lm, :], Lm :=

⌊
mL

M

⌋
. (5)
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Figure 2: The proposed dual-path diffusion (DPD) model

Here, we use the NumPy slicing syntax (0 as the first index) to locate the m-th chunk, and we draw
δm ∼ Uniform[0, π/2] for each chunk at each training step to determine the noise scale. To learn θ,
we use the mean squared error (MSE) loss in [1, 48]:

Ldiff := Ez,ϵ,δ1,...,δM

[
∥vtgt − v̂θ(znoisy; c)∥22

]
, (6)

znoisy := cos(δm)z[Lm−1 : Lm, :] + sin(δm)ϵ[Lm−1 : Lm, :], (7)

where c generally denotes the collection of conditions used for the velocity prediction. In MeLoDy,
as illustrated in Figure 1, we propose to use the semantic tokens u1, . . . ,uTST , which are obtained
from the SSL model during training and generated by the LM at inference time, to condition the DPD
model. In our experiments, we find that the stability of generation can be significantly improved if we
use token-based discrete conditions to control the semantics of the music and let the diffusion model
learn the embedding vector for each token itself. Additionally, to assist the multi-chunk prediction,
we append an angle vector to the condition that represents the angles drawn in the M chunks:

c := {u1, . . . ,uTST , δ} , δ := [δ1]
L1

r=1 ⊕ · · · ⊕ [δM ]
LM

r=1 ∈ RL (8)

where [a]
B
r=1 denotes the operation of repeating a scalar a for B times to make a B-length vector.

Suppose we have a well-trained velocity model, for sampling, we apply the trigonometric identities
to the DDIM sampling algorithm [26] (see Appendix A) and obtain a simplified update rule:

zδt−ωt
= cos(ωt)zδt − sin(ωt)v̂θ(zδt ; c), (9)

by which, using the angle schedule in Eq. (4) and running from t = T to t = 1, we get a sample of z.

4.1.2 Dual-Path Modeling for Efficient and Effective Velocity Prediction

Next, we present how v̂θ takes in the noisy latent and the conditions and efficiently incorporates
the semantic tokens into the coarse processing path for effective velocity prediction. As a highlight
of this work, we modify the dual-path technique borrowed from audio separation [35, 37, 38], and
propose a novel architecture for efficient, simultaneous coarse and fine acoustic modeling, as shown
in Figure 2. This architecture comprises several critical modules, which we present one by one below.

To begin with, we describe how the conditions are processed in DPD (the middle part in Figure 2):

Encoding Angle Vector First, we encode δ ∈ RL, which records the frame-level noise scales
of latents. Instead of using the classical positional encoding [1], we use a Slerp-alike spherical
interpolation [52] to two learnable vectors estart, eend ∈ R256 based on broadcast multiplications ⊗:

Eδ := MLP (sin(δ)⊗ estart + sin(δ)⊗ eend) ∈ RL×Dhid , (10)

where MLP(x) := RMSNorm(W2GELU(xW1 + b1) + b2) projects an arbitrary input x ∈ RDin

to RDhid using RMSNorm [53] and GELU activation [54]. Here, Dhid is hidden dimension defined
for the model, and W1 ∈ RDin×Dhid , W2 ∈ RDhid×Dhid , b1,b2 ∈ RDhid are the learnable parameters.
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Encoding Semantic Tokens The remaining conditions are the discrete tokens representing semantic
information u1, . . . ,uTST . Following the typical approach for embedding natural languages [8], we
directly use a lookup table of vectors to map any token ut ∈ {1, . . . , VST} into a real-valued vector
E(ut) ∈ RDhid , where VST denotes the vocabulary size of the semantic tokens, i.e., the number
of clusters in k-means for Wav2Vec2-Conformer. By stacking the vectors along the time axis and
applying an MLP block, we obtain EST := MLP ([E(u1), . . . , E(uTST)]) ∈ RTST×Dhid .

Next, we show how the network input (i.e., znoisy at training time, or zδt at inference time) is processed
given the condition embeddings. We use znoisy as input for our explanation below, since zδt is only its
special case with all chunks having the same noise scale. The input znoisy is first linearly transformed
and added up with the angle embedding of the same shape: H := RMSNorm (znoisyWin +Eδ) ,
where Win ∈ RD×Dhid is learnable. We then perform segmentation for dual-path processing.

Segmentation As shown in Figure 3a, the segmentation module divides a 2-D input into S half-
overlapping segments each of length K, represented by a 3-D tensor H := [0,H1, . . . ,HS ,0] ∈
RS×K×Dhid , where Hs := H

[
(s−1)K

2 : (s−1)K
2 +K, :

]
, and H is zero-padded such that we have

S =
⌈
2L
K

⌉
+1. With a segment size K ≈

√
L, the length for sequence processing becomes sub-linear

(O(
√
L)) as opposed to tackling the whole sequence (O(L)). This greatly reduces the difficulty of

learning a very long sequence and permits MeLoDy to use higher-frequency latents.

Dual-Path Blocks After the segmentation, we obtain a 3-D tensor input for N dual-path blocks,
each block exhibits an architecture shown on the rightmost of Figure 2. The input to the i-th dual-path
block is denoted as H(i), and we have H(1) := H. Each block contains two stages corresponding to
coarse-path (i.e., inter-segment) and fine-path (i.e., intra-segment) processing, respectively. Similar
to the observations in [37, 38], we find it superior to use an attention-based network for coarse-path
processing and to use a bi-directional RNN for fine-path processing. The goal of fine acoustic
modeling is to better reconstruct the fine details from the roughly determined audio structure [3]. At a
finer scope, only the nearby elements matter and contain the most information needed for refinement,
as supported by the modeling perspectives in neural vocoding [55, 56]. Specifically, we employ the
Roformer network [57] for coarse-path processing, where we use a self-attention layer followed
by a cross-attention layer to be conditional on EST with rotary positional embedding. On the other
hand, we use a stack of 2-layer simple recurrent units (SRUs) [58] for fine-path processing. The
feature-wise linear modulation (FiLM) [59] is applied to the output of SRUs to assist the denoising
with the angle embedding Eδ and the pooled EST. Each of these processing stages is detailed below.

Coarse-Path Processing In a dual-path block, we first process the coarse path corresponding to the
vertical axis shown in Figure 3a, in which the columns are processed in parallel:

H(i)
c-out := RepeatSegments

([
Roformer

(
MergeSegments

(
H(i)

)
[:, k, :]

)
, k = 0, . . . ,K

(i)
MS − 1

])
,

(11)

where the coarse-path output H(i)
c-out ∈ RS×K×Dhid has the same shape as H(i), and MergeSegments(·)

and RepeatSegments(·) are the operations that, respectively, compress and expand the segments
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horizontally to aggregate the information within a segment for a coarser scale of inter-segment
processing. Note that, without taking the merging and repeating operations, the vertical axis is simply
a sequence formed by skipping K/2 elements in H, which does not really capture the desired coarse
information. The merging is done by averaging every pair of 2min{i,N−i+1} columns with zero
paddings and a half stride such that K(i)

MS =
⌈

K
2min{i,N−i+1}−1

⌉
. The upper part of Figure 3b illustrates

the case of i = 2. Similar to [38], our definition of K(i)
MS changes the width of the 3d tensor with

the block index i in a sandglass style, as we have the shortest segment at the middle block and the
longest segment at the first and the last block. To match with the original length, a repeating operation
following from the Roformer is performed, as shown in the lower part of Figure 3b.

Fine-Path Processing We then obtain the fine-path input: H(i)
f-in := RMSNorm

(
H(i) +H(i)

c-out

)
,

which is fed to a two-layer SRU by parallelly processing the rows illustrated in Figure 3a:

H(i)
f-out :=

[
FiLM

(
SRU

(
H(i)

f-in[s, :, :]
)
,Eδ

[
sL

S
, :

]
+

1

TST

TST−1∑
t=0

EST[t, :]

)
, s = 0, . . . , S − 1

]
,

(12)
where FiLM(x,m) := MLP3 ((x⊗ MLP1(m)) + MLP2(m)) for an arbitrary input x and modu-
lation condition m, and ⊗ is the operations of broadcast multiplication. Followed from this, we
have the input for the next dual-path block: H(i+1) := RMSNorm

(
H(i)

f-in +H(i)
f-out

)
. After recursively

processing through N dual-path blocks, the 3-D tensor is transformed back to a 2-D matrix using an
overlap-and-add method [35]. Finally, the predicted velocity is obtained as follows:

v̂θ(znoisy; c) := RMSNorm
(

OverlapAdd
(
H(N+1)

))
Wout, (13)

where Wout ∈ RDhid×D is learnable. We present more details of our implementation in Appendix B.

4.2 Audio VAE-GANs for Latent Representation Learning

To avoid learning arbitrarily high-variance latent representations, Rombach et al. [2] examined a KL-
regularized image autoencoder for latent diffusion models (LDMs) and demonstrated extraordinary
stability in generating high-quality image [60], igniting a series of follow-up works [61]. Such an
autoencoder imposes a KL penalty on the encoder outputs in a way similar to VAEs [62, 63], but,
different from the classical VAEs, it is adversarially trained as in the generative adversarial networks
(GANs) [64]. In this paper, this class of autoencoders is referred to as the VAE-GAN. Although
VAE-GANs are promisingly applied to image generation, there is still a lack of comparable successful
methods for the autoencoding of audio waveforms. In this work, we propose a similarly trained
audio VAE-GAN, which empirically showed remarkable stability when applied to our DPD model in
comparison to other commonly used VQ-VAE used in [12, 21, 65].

Specifically, the audio VAE-GAN is trained to reconstruct 24kHz audio with a striding factor of 96,
resulting in a 250Hz latent sequence. The architecture of the decoder is the same as that in HiFi-GAN
[66]. For the encoder, we basically replace the up-sampling modules in the decoder with convolution-
based down-sampling modules while other modules stay the same. For adversarial training, we use the
multi-period discriminators in [66] and the multi-resolution spectrogram discriminators in [67]. The
training details are further discussed in Appendix B. To match the normal range of targets for diffusion
models [1, 2], we map the encoder outputs to [−1, 1] by z(i,j) := min

{
max

{
z̄(i,j)/3,−1

}
, 1
}
∀i, j,

where the subscript (i, j) denotes the value on the i-th row and j-th column, and the choice of 3 in
practice would sieve extreme values occupying < 0.1%.

4.3 Music Inpainting, Music Continuation and Music Prompting with MeLoDy

We show that the proposed MeLoDy supports interpolation (i.e., audio inpainting) and extrapolation
(i.e., audio continuation) with tricks of manipulating random noises. Noticeably, diffusion models
have been successfully used for effective audio inpainting [21, 22]. Yet, audio continuation has been
an obstacle for diffusion models due to their non-autoregressive nature. Besides audio continuation,
based on MuLan, MeLoDy also supports music prompts to generate music of a similar style, as
shown in Figure 1. Examples of music inpainting, music continuation, and music prompting are
shown on our demo page. We present the algorithms of these functionalities in Appendix C.
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Table 2: The speed and the quality of our proposed MeLoDy on a CPU (Intel Xeon Platinum 8260
CPU @ 2.40GHz) or a GPU (NVIDIA Tesla V100) using different numbers of sampling steps.

Steps (T ) Speed on CPU (↑) Speed on GPU (↑) FAD (↓) MCC (↑)

(MusicCaps) - - - 0.43

5 1472Hz (0.06×) 181.1kHz (7.5×) 7.23 0.49
10 893Hz (0.04×) 104.8kHz (4.4×) 5.93 0.52
20 498Hz (0.02×) 56.9kHz (2.4×) 5.41 0.53

5 Experiments

5.1 Experimental Setup

Data Preparation As shown in Table 1, MeLoDy was trained on 257k hours of music data (6.4M
24kHz audios), which were filtered with [27] to focus on non-vocal music. Additionally, inspired by
the text augmentation in [6], we enriched the tag-based texts to generate music captions by asking
ChatGPT [68]. This music description pool is used for the training of our 195.3M MuLan, where we
randomly paired each audio with either the generated caption or its respective tags. In this way, we
robustly improve the model’s capability of handling free-form text.

Semantic LM For semantic modeling, we trained a 429.5M LLaMA [69] with 24 layers, 8 heads,
and 2048 hidden dimensions, which has a comparable number of parameters to that of the MusicLM
[5]. For conditioning, we set up the MuLan RVQ using 12 1024-sized codebooks, resulting in 12
prefixing tokens. The training targets were 10s semantic tokens, which are obtained from discretizing
the 25Hz embeddings from a 199.5M Wav2Vec2-Conformer with 1024-center k-means.

Dual-Path Diffusion For the DPD model, we set the hidden dimension to Dhid = 768, and block
number to N = 8, resulting in 296.6M parameters. For the input chunking strategy, we divide the 10s
training inputs in a fixed length of L = 2500 into M = 4 parts. For segmentation, we used a segment
size of K = 64 (i.e., each segment is 256ms long), leading to S = 80 segments. In addition, we
applied the classifier-free guidance [70] to DPD for improving the correspondence between samples
and conditions. During training, the cross-attention to semantic tokens is randomly replaced by
self-attention with a probability of 0.1. For sampling, the predicted velocity is linearly combined as .
For all of our generations, a scale of 2.5 was used for classifier-free guidance.

Audio VAE-GAN For audio VAE-GAN, we used a hop size of 96, resulting in 250Hz latent
sequences for encoding 24kHz music audio. The latent dimension D = 16, thus we have a total
compression rate of 6×. The hidden channels used in the encoder were 256, whereas that used in the
decoder were 768. The audio VAE-GAN in total contains 100.1M parameters.

5.2 Performance Analysis

Objective Metrics We use the VGGish-based [71] Frećhet audio distance (FAD) [72] between the
generated audios and the reference audios from MusicCaps [5] as a rough measure of generation
fidelity.2 To measure text correlation, we use the MuLan cycle consistency (MCC) [5], which
calculates the cosine similarity between text and audio embeddings using a pre-trained MuLan.3

Inference Speed We first evaluate the sampling efficiency of our proposed MeLoDy. As DPD
permits using different numbers of sampling steps depending on our needs, we report its generation
speed in Table 2. Surprisingly, MeLoDy steadily achieved a higher MCC score than that of the
reference set, even taking only 5 sampling steps. This means that (i) the MuLan model determined
that our generated samples were more correlated to MusicCaps captions than reference audios, and
(ii) the proposed DPD is capable of consistently completing the MuLan cycle at significantly lower
costs than the nested LMs in [5].

2Note that MeLoDy was mainly trained with non-vocal music data, its sample distribution could not fit the
reference one as well as in [5, 6], since about 76% audios in MusicCaps contain either vocals or speech.

3Since our MuLan model was trained with a different dataset, our MCC results cannot be compared to [5, 6].
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Table 3: The comparison of MeLoDy with the SOTA text-to-music generation models. NFE is the
number of function evaluations [48] for generating T -second audio.5 Musicality, Quality, and Text
Corr. are the winning proportions in terms of musicality, quality, and text correlation, respectively.

Model NFE (↓) Musicality (↑) Quality (↑) Text Corr. (↑)

MLM N2M MLM N2M MLM N2M

MusicLM [5] (25 + 200 + 400)T 0.541 - 0.465 - 0.548 -
Noise2Music [6] 1000 + 800 + 800 - 0.555 - 0.436 - 0.572
MeLoDy (20 steps) 25T + 20 0.459 0.445 0.535 0.564 0.452 0.428

Comparisons with SOTA models We evaluate the performance of MeLoDy by comparing it
to MusicLM [5] and Noise2Music [6], which both were trained large-scale music datasets and
demonstrated SOTA results for a wide range of text prompts. To conduct fair comparisons, we used
the same text prompts in their demos (70 samples from MusicLM; 41 samples from Noise2Music),4
and asked seven music producers to select the best out of a pair of samples or voting for a tie (both win)
in terms of musicality, audio quality, and text correlation. In total, we conducted 777 comparisons
and collected 1,554 ratings. We detail the evaluation protocol in Appendix F. Table 3 shows the
comparison results, where each category of ratings is separated into two columns, representing
the comparison against MusicLM (MLM) or Noise2Music (N2M), respectively. Finally, MeLoDy
consistently achieved comparable performances (all winning proportions fall into [0.4, 0.6]) in
musicality and text correlation to MusicLM and Noise2Music. Regarding audio quality, MeLoDy
outperformed MusicLM (p < 0.05) and Noise2Music (p < 0.01), where the p-values were calculated
using the Wilcoxon signed-rank test. We note that, to sample 10s and 30s music, MeLoDy only takes
4.32% and 0.41% NFEs of MusicLM, and 10.4% and 29.6% NFEs of Noise2Music, respectively.

Diversity Analysis Diffusion models are distinguished for its high diversity [25]. We conduct an
additional experiment to study the diversity and validity of MeLoDy’s generation given the same text
prompt of open description, e.g., feelings or scenarios. The sampled results were shown on our demo
page, in which we obtained samples with diverse combinations of instruments and textures.

Ablation Studies We also study the ablation on two aspects of the proposed method. In Appendix
D, we compared the uniform angle schedule in [23] and the linear one proposed in DPD using the
MCC metric and case-by-case qualitative analysis. It turns out that our proposed schedule tends to
induce fewer acoustic issues when taking a small number of sampling steps. In Appendix E, we
showed that the proposed dual-path architecture outperformed other architectures [23, 31] used for
LDMs in terms of the signal-to-noise ratio (SNR) improvements using a subset of the training data.

6 Discussion

Limitation We acknowledge the limitations of our proposed MeLoDy. To prevent from having
any disruption caused by unnaturally sound vocals, our training data was prepared to mostly contain
non-vocal music only, which may limit the range of effective prompts for MeLoDy. Besides, the
training corpus we used was unbalanced and slightly biased towards pop and classical music. Lastly,
as we trained the LM and DPD on 10s segments, the dynamics of a long generation may be limited.

Broader Impact We believe our work has a huge potential to grow into a music creation tool for
music producers, content creators, or even normal users to seamlessly express their creative pursuits
with a low entry barrier. MeLoDy also facilitates an interactive creation process, as in Midjourney
[24], to take human feedback into account. For a more precise tune of MeLoDy on a musical style,
the LoRA technique [73] can be potentially applied to MeLoDy, as in Stable Diffusion [60].

4All samples for evaluation are available at https://Efficient-MeLoDy.github.io/. Note that our samples were
not cherry-picked, whereas the samples we compared were cherry-picked [6], constituting very strong baselines.

5We use + to separate the counts for the iterative modules, i.e., LM or DPM. Suppose the cost of each module
is comparable, then the time steps taken by LM and the diffusion steps taken by DPM can be fairly compared.
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A Mathematical Background for Dual-Path Diffusion

A.1 Forward Diffusion Process

In dual-path diffusion (DPD), we consider a Gaussian diffusion process [16] that continuously diffuses
our generation target z into increasingly noisy versions of z, denoted as zt with t ∈ [0, 1] running
from t = 0 (least noisy) to t = 1 (most noisy). This forward diffusion process is formally defined as

q(zt|z) = N (zt;αtz, σ
2
t I), (14)

where two strictly positive scalar-valued, continuously differentiable functions αt, σt define the
noise schedule [1] of this forward diffusion process. Building upon the nice properties of Gaussian
distributions, we can express q(zt|zs), for any 0 ≤ s < t ≤ 1, as another Gaussian distribution:

q(zt|zs) = N
(
zt;

αt

αs
zs,

(
σ2
t −

αt

αs
σ2
s

)
I

)
. (15)

Regarding the choice of noise scheduling functions, we consider the typical setting used in [1, 15]:
αt =

√
1− σ2

t , which gives rise to a variance-preserving diffusion process [16]. Specifically, we
employ the trigonometric functions in [48], defined as follows:

αt := cos(πt/2) σt := sin(πt/2) ∀t ∈ [0, 1] (16)
⇔ αδ := cos(δ) σδ := sin(δ) ∀δ ∈ [0, π/2]. (17)

With this re-parameterization, the diffusion process can now be defined in terms of angle δ ∈ [0, π/2]:

zδ = cos(δ)z+ sin(δ)ϵ, ϵ ∼ N (0, I), (18)

where zδ gets noisier as δ increases from 0 to π/2.

A.2 Prediction of Diffusion Velocity

The diffusion velocity of zδ at δ [48] is defined as:

vδ :=
dzδ
dδ

=
d cos(δ)

dδ
z+

d sin(δ)

dδ
ϵ = cos(δ)ϵ− sin(δ)z. (19)

Based on vδ , we can compute z and ϵ from a noisy latent zδ:

z = cos (δ)zδ − sin(δ)vδ = αδzδ − σδvδ; (20)
ϵ = sin (δ)zδ + cos(δ)vδ = σδzδ + αδvδ, (21)

which suggests vδ a feasible target for network prediction v̂θ(zδ; c) given a collection of conditions
c, as an alternative to the z prediction (ẑθ(zδ; c)), e.g., in [16], and the ϵ prediction (ϵ̂θ(zδ; c)), e.g.,
in [1, 50, 74]. As reported by Salimans and Ho [48] and Schneider et al. [23], training the neural
network θ with a mean squared error (MSE) loss as in the pioneering work [1] remains effective:

L := Ez∼pdata(z),ϵ∼N (0,I),δ∼Uniform[0,1]

[
∥cos(δ)ϵ− sin(δ)z− v̂θ(cos(δ)z+ sin(δ)ϵ; c)∥22

]
, (22)

which forms the basis of DPD’s training loss, i.e., the simplest case of considering only a single
chunk per input (M = 1) in Eq. (7). We can easily extend this to a multi-chunk version by sampling
M different angles δ1, . . . , δM ∼ Uniform[0, 1], where the m-th sampled angle is applied to the
corresponding chunk of the latent, i.e., z[(m− 1)L/M : mL/M ].

A.3 Generative Diffusion Process

Generation is done by inverting the forward process from a noise vector randomly drawn from
N (0, I). One efficient way to accomplish this is to take advantage of DDIM [26], which enables
running backward from angle δ to angle δ − ω, for any step size 0 < ω < δ:

pθ(zδ−ω|zδ) := q

(
zδ−ω

∣∣∣∣z =
zδ − σδ ϵ̂θ(zδ; c)

αδ

)
= αδ−ω

(
zδ − σδ ϵ̂θ(zδ; c)

αδ

)
+ σδ−ωϵ, (23)
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where ϵ ∼ N (0, I). Song et al. [26] considered ϵ ≡ ϵ̂θ(zδ; c), leading to a deterministic update rule:

zδ−ω =
αδ−ω

αδ
zδ +

(
σδ−ω − αδ−ωσδ

αδ

)
ϵ̂θ(zδ; c). (24)

Building upon the diffusion velocity, Salimans and Ho [48] re-parameterized DDIM as

pθ(zδ−ω|zδ) :=q (zδ−ω |z = αδzδ − σδv̂θ(zδ; c) ) (25)
=αδ−ω (αδzδ − σδv̂θ(zδ; c)) + σδ−ωϵ, (26)

where ϵ ∼ N (0, I). Here, we can similarly consider a parameterized noise vector ϵ ≡ σδzδ +
αδv̂θ(zδ; c) based on Eq. (21), yielding a simplified deterministic update rule:

zδ−ω =αδ−ω (αδzδ − σδv̂θ(zδ; c)) + σδ−ω (σδzδ + αδv̂θ(zδ; c)) (27)
=(αδ−ωαδ − σδ−ωσδ) zδ + (σδ−ωαδ − αδ−ωσδ) v̂θ(zδ; c) (28)
=cos(ω)zδ − sin(ω)v̂θ(zδ; c) (29)

where the last equation is obtained by applying the trigonometric identities:

αδ−ωαδ − σδ−ωσδ = cos(δ − ω) cos(δ)− sin(δ − ω) sin(δ) = cos(ω); (30)
σδ−ωαδ − αδ−ωσδ = sin(δ − ω) cos(δ)− cos(δ − ω) sin(δ) = sin(ω). (31)

Building upon this angular update rule and having specified the angle step sizes ω1, . . . , ωT with∑T
t=1 ωt = π/2, we can generate samples from zπ/2 ∼ N (0, I) after T steps of sampling:

zδt−ωt
= cos(ωt)zδt − sin(ωt)v̂θ(zδt ; c), δt =

{
π
2 −

∑T
i=t+1 ωi, 1 ≤ t < T ;

π
2 , t = T,

(32)

running from t = T to t = 1.

B Training and Implementation Details

B.1 Audio VAE-GAN

VAE-GAN

Sample

Encoder

𝜇 𝜎

Discriminators
GAN loss
FM loss

Reconstructed audio

Ground-truth audio

KL loss

MR-STFT loss

Real

Fake

Decoder

Map to [-1, 1]

Figure 4: The audio VAE-GAN trained for dual-path diffusion models

As shown in Figure 4, we train a VAE-GAN to extract 250Hz 16-dimensional latent z ∈ RL×16

from a 24kHz audio x ∈ RTwav with L = ⌈Twav/96⌉. The audio VAE-GAN mainly comprises three
trainable modules: (i) a variational Gaussian encoder Eϕ(x) ≡ N (µϕ(x), σϕ(x)I), (ii) a decoder
Dϕ(z), and (iii) a set of n discriminators {D(i)}ni=1.

Regarding network architecture, we use the ResNet-style convolutional neural networks (CNNs) in
HiFi-GAN [66] as the backbone.6 For the encoder, we replace the up-sampling blocks in HiFi-GAN
with convolution-based down-sampling blocks, with down-sampling rates of [2, 3, 4, 4], output dimen-
sions of [32, 64, 128, 256] and kernel sizes of [5, 7, 9, 9] in four down-sampling blocks, giving 40M

6Our implementation is similar to that in https://github.com/jik876/hifi-gan.
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parameters. The final layer of the encoder maps the 256-dimensional output to two 16-dimensional
latent sequences, respectively for the mean and variance of diagonal Gaussian sampling.7 As shown
in Figure 4, to match the normal range of targets for diffusion models [1, 2], we map the sampled
outputs to [−1, 1] by z(i,j) := min

{
max

{
z̄(i,j)/3,−1

}
, 1
}
∀i, j, where the subscript (i, j) denotes

the value on the i-th row and j-th column, and the choice of 3 in practice would sieve extreme values
occupying < 0.1%. For the architecture setting of the decoder, it inherits the same architecture of
HiFi-GAN, and uses up-sampling rates of [4, 4, 3, 2], kernel sizes of [9, 9, 5, 7] and larger number of
output channels ([768, 384, 192, 96]) for four up-sampling blocks, taking 60.1M parameters.

For adversarial training, we use the multi-period discriminators in [66] and the multi-resolution
spectrogram discriminators in [67]. The training scheme is similar to that in [66]. The training loss
for the encoder and the decoder comprises four components:

Lvae-gan(ϕ) :=Ex∼pdata(x)
[
Ez∼Eϕ(x) [λmr-stftLmr-stft + λfmLfm + λganLgan + λklLkl]

]
(33)

Lmr-stft :=

R∑
r=1

∥STFTr(x)− STFTr (Dϕ (z))∥1 (34)

Lfm :=

n∑
i=1

1

|D(i)|

|D(i)|∑
l=1

∥∥∥D(i)
l (x)−D

(i)
l (Dϕ (z))

∥∥∥
1

(35)

Lgan :=

n∑
i=1

(
D(i) (Dϕ (z))− 1

)2
(36)

Lkl :=KL (Eϕ(x)||N (0, I)) , (37)

where STFTr computes the magnitudes after the r-th short-time Fourier transform (STFT) out of
R = 7 STFTs (the number of FFTs = [8192, 4096, 2048, 512, 128, 64, 32]; the window sizes =
[4096, 2048, 1024, 256, 64, 32, 16]; the hop sizes = [2048, 1024, 512, 128, 32, 16, 8]), |D(i)| denotes
the number of hidden layers used for feature matching in discriminator D(i), D(i)

l denotes the outputs
of the l-th hidden layers in discriminator D(i), and λmr-stft, λfm, λgan, λkl are the weights, respectively,
for the multi-resolution STFT loss Lmr-stft, the feature matching loss Lfm, the GAN’s generator loss
Lgan, and the Kullback–Leibler divergence based regularization loss Lkl. To balance the scale of
different losses, we set λmr-stft = 50, λfm = 20, Lgan = 1, and λkl = 5 × 10−3 in our training. In
practice, we find it critical to lower the scale of the KL loss for a better reconstruction, though the
distribution of the latents can still be close to zero mean and unit variance.

B.2 Wav2Vec2-Conformer

Our implementation of Wav2Vec2-Conformer was based on an open-source library.8 In particular,
Wav2Vec2-Conformer follows the same architecture as Wav2Vec2 [44], but replaces the Transformer
structure with the Conformer [45]. This model with 199.5M parameters was trained in self-supervised
learning (SSL) manner similar to [44] using our prepared 257k hours of music data.

B.3 MuLan

Our reproduced MuLan [43] is composed of a music encoder and a text encoder. For music encoding,
we rely on a publicly accessible Audio Spectrogram Transformer (AST) model pre-trained on
AudioSet,9 which gives promising results on various audio classification benchmarks. For text
encoding, we employ the BERT [8] base model pre-trained on a large corpus of English data using
a masked language modeling (MLM) objective.10 These two pre-trained encoders, together having
195.3M parameters, were subsequently fine-tuned on the 257k hours of music data with a text
augmentation technique similar to [6]. In particular, we enriched the tag-based texts to generate
music captions by asking ChatGPT [68]. At training time, we randomly paired each audio with either

7The Gaussian sampling is referred to LDMs’ implementation at https://github.com/CompVis/latent-
diffusion/blob/main/ldm/modules/distributions/distributions.py

8https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer
9https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593

10https://huggingface.co/bert-base-uncased
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Algorithm 1 Music Generation
1: given Dϕ, v̂θ , T , ω1, . . . , ωT

2: input Music/text prompt P
3:
4: Initialize δT = π/2
5: Compute the MuLan tokens for P: c1:Tcnd

6: Generate u1:TST from c1:Tcnd with LM ▷ (1)
7: Sample zδT ∼ N (0, I)
8: for t = T to 1 do
9: Prepare condition: c = {u1:TST , [δt]

L
r=1} ▷ (8)

10: Update angle: δt−1 = δt − ωt ▷ (3)
11: zδt−1 = cos(ωt)zδt − sin(ωt)v̂θ(zδt ; c) ▷ (9)
12: end for
13: repeat
14: pass c1:Tcnd , u1:TST and z0 to Algorithm 2
15: until z0 reaches the desired length
16: return Dϕ(z0)

Algorithm 2 Music Continuation
1: given Dϕ, v̂θ , T , M , ω1, . . . , ωT

2: input Music z0 and c1:Tcnd , u1:TST (if provided)
3:
4: Denote MST = ⌈TST/M⌉, LM = ⌈L/M⌉
5: Initialize δT = π/2
6: Generate uTST:TST+MST from c1:Tcnd ⊕ uMST:TST

7: Sample znew ∼ N (0, I) ∈ RLM

8: Save first chunk: zsave = z0[: LM ]
9: zδT = z0[LM :]⊕ znew

10: for t = T to 1 do
11: Update δnew = [0]L−LM

r=1 ⊕ [δt]
LM
r=1

12: Prepare condition: c = {uMST:TST+MST , δnew}
13: Update angle: δt−1 = δt − ωt

14: zδt−1 = cos(ωt)zδt − sin(ωt)v̂θ(zδt ; c)
15: end for
16: return zsave ⊕ z0

the generated caption or its respective tags. In practice, this could robustly improve the model’s
capability of handling free-form text.

C Algorithms for MeLoDy

MeLoDy supports music or text prompting for music generation, as illustrated in Figure 1. We
concretely detail the sampling procedures in Algorithm 1, where the algorithm starts by generating
the latent sequence of length L and then recursively prolongs the latent sequence using Algorithm 2
until it reaches the desired length.

We further explain how music continuation can be effectively done in DPD. Recall that the inputs for
training DPD are the concatenated chunks of noisy latents in different noise scales. To continue a
given music audio, we can add a new chunk composed of random noises and drop the first chunk.
This is feasible since the conditions (i.e., the semantic tokens and the angles) defined for DPD have
an autoregressive nature. Based on the semantic LM, we can continue the generation of ⌈TST/M⌉
semantic tokens for the new chunk. Besides, it is sensible to keep the chunks other than the new
chunk to have zero angles: δnew := [0]

L−⌈L/M⌉
r=1 ⊕ [δt]

⌈L/M⌉
r=1 , as shown in Algorithm 2.

In addition, music inpainting can be done in a similar way. We replace the inpainting partition of the
input audio with random noise and partially set the angle vector to zeros to mark the positions where
the denoising operations are not needed. Yet, in this case, the semantic tokens can only be roughly
estimated using the remaining part of the music audio.

Table 4: The objective measures for the ablation study on angle schedules.
Angle schedule (ωt) Steps (T ) FAD (↓) MCC (↑)

Uniform [23]: ωt =
π
2T

10 8.52 0.45
20 6.31 0.49

Ours proposed in Eq. (4): ωt =
π
6T + 2πt

3T (T+1)
10 5.93 0.52
20 5.41 0.53

D Ablation Study on Angle Schedules

We conduct an ablation study on angle schedules to validate the effectiveness of our proposed angle
schedule ω1, . . . , ωT in Eq. (4) in comparison to the previous uniform angle schedule [23] also used
for angle-parameterized continuous-time diffusion models. In particular, the same pre-trained DPD
model v̂θ and was used to sample with two different angle schedules with 10 steps and 20 steps,
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respectively, conditional on the same semantic tokens generated for the text prompts in MusicCaps.
Table 4 shows their corresponding objective measures in terms of FAD and MCC. We observe a
significant improvement, especially when taking a small number of sampling steps, by using the
proposed sampling method. This is aligned with our expectations that taking larger steps at the
beginning of the sampling followed by smaller steps could improve the quality of samples, similar to
the findings in previous diffusion scheduling methods [50, 51].

We further qualitatively analyze the quality of the generated samples using some simple text prompts
of instruments, i.e., flute, saxophone, and acoustic guitar, by pair-wise comparing their spectrograms
as illustrated in Figure 5. In the case of “flute”, sampling with the proposed angle schedule results in
a piece of naturally sound music, being more saturated in high-frequency bands and even remedying
the breathiness of flute playing, as shown in Figure 5b. On the contrary, we can observe from the
spectrogram in Figure 5a that the sample generated with a uniform angle schedule is comparatively
monotonous. In the case of “saxophone”, the uniform angle schedule leads to metallic sounds that
are dissonant, as revealed by the higher energy in 3kHz to 6kHz frequency bands shown in Figure 5c.
In comparison, the frequency bands are more consistent in Figure 5d, when the proposed schedule is
used. While the comparatively poorer sample quality using the uniform schedule could be caused by
the limited number of sampling steps, we also show the spectrograms after increasing the sampling
steps from 10 to 20. In the case of “acoustic guitar”, when taking 20 sampling steps, the samples
generated with both angle schedules sound more natural. However, in Figure 5e, we witness a
horizontal line around the 4.4kHz frequency band, which is unpleasant to hear. Whereas, the sample
generated by our proposed schedule escaped such an acoustic issue, as presented in Figure 5f.

(a) 10-step sampling with uniform angle schedule for
text prompt: “flute”

(b) 10-step sampling with our proposed angle schedule
for text prompt: “flute”

(c) 10-step sampling with uniform angle schedule for
text prompt: “saxophone”

(d) 10-step sampling with our proposed angle schedule
for text prompt: “saxophone”

(e) 10-step sampling with uniform angle schedule for
text prompt: “acoustic guitar”

(f) 10-step sampling with our proposed angle schedule
for text prompt: “acoustic guitar”

Figure 5: Spectrograms of generated samples with uniform (left) and our proposed (right) angle
schedules
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Table 5: The objective measures for the ablation study on architectures.
Architecture Velocity MSE (↓) SI-SNRi (↑)

UNet-1D [23] 0.13 5.33
UNet-2D [31] 0.15 4.96

DPD (Ours) 0.12 6.15

E Ablation Study on Architectures

To examine the superiority of our proposed dual-path model in Figure 2, we also study the ablation of
network architectures. In particular, to focus on the denoising capability of different architectures,
we only take a subset of the training data (approximately 5k hours of music data) to train different
networks with the same optimization configurations – 100k training steps using AdamW optimizer
with a learning rate of 5 × 10−4 and a batch size of 96 on 8 NVIDIA V100 GPUs. For a fair
comparison, we train the UNet-1D11 and the UNet-2D12 with comparable numbers of parameters
(approximately 300M). Note that the FAD and MCC measures are not suitable for evaluating the
performance of each forward pass of the trained network for denoising. In addition to the training
objective, i.e., the velocity MSE, we use the scale-invariant signal-to-noise ratio (SNR) improvements
(SI-SNRi) [35, 37] between the true latent z and the predicted latent ẑ = αδzδ − σδv̂θ(zδ; c). The
results are shown in Table 5, where our proposed dual-path architecture outperforms the other two
widely used UNet-style architectures in terms of both the velocity MSE and SI-SNRi.

F Qualitative Evaluation

To conduct a pair-wise comparison, each music producer is asked to fill in the form composed of
three questions. Specifically, we present the user interface for each pair-wise comparison in Figure 6.

Figure 6: The user interface for music producers in each pair-wise comparison

11Our implementation of UNet-1D relied on https://github.com/archinetai/a-unet.
12Our implementation of UNet-2D relied on https://huggingface.co/riffusion/riffusion-model-v1.
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