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A computer-implemented method of generating a piece of
music is disclosed. The method comprises: determining an
initial sequence of notes for the piece of music; determining
at least one probability distribution for selecting at least one
subsequent note from a set of candidate notes; generating a
biasing output based on data of the initial sequence of notes;
and extending the initial sequence of notes with at least one
subsequent note selected from the set of candidate notes
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1
METHOD OF GENERATING MUSIC DATA

FIELD

The disclosure relates to a computer-implemented method
of generating a piece of music.

BACKGROUND

Previous attempts at generative music software have
generally fallen into two categories: those whose musical
output does not include the level of structure that is required
for the music to be pleasing to the listener, because they do
not apply the rules and constraints to the output that are
necessary to produce such structure; and those that incor-
porate structure using hard-coded rules and constraints to the
output, which result in the output being predictable and
lacking the musical quality and variation that is found in
human-composed music.

Methods for generating more complex and aurally pleas-
ing music, in which longer range repeats and patterns feature
but in which the musical quality and variation of a system
that avoids hard-coded rules and constraints on output is
retained, are needed.

SUMMARY

The embodiments disclosed herein provide a manner of
introducing a long-term structure in machine-generated
music. Structure is a key aspect of music composed by
humans that plays a crucial role in giving a piece of music
a sense of overall coherence and intentionality. Structure
appears in a piece of music as a collection of musical
patterns, variations of these patterns, literal or motive
repeats and transformations of sections of music that have
occurred earlier in the same piece.

An invention is set out in the claims.

In a first aspect, a computer-implemented method of
providing one or more outputs at one or more respective
time instants is provided. The method comprises generating
at least one first data object executable to provide a first
portion of an output, the at least one first data object
comprising a parameter having a first value associated
therewith; placing the at least one first data object in a first
position in a sequence; generating at least one second data
object executable to provide a second portion of the output;
generating a first array of probabilities for a second value of
the parameter for the at least one second data object, the first
array of probabilities being influenced by the first value;
generating a second array of probabilities for the second
value of the parameter, the second array of probabilities
comprising a probability that the second value is equal to the
first value; combining the first array and the second array to
provide a modified array of probabilities; determining and
setting the second value based on the modified array of
probabilities; placing the at least one second data object in
a second position in the sequence, the second position
providing a second portion of the output; and outputting the
at least one first and second data objects at the respective
first and second positions in the sequence to provide the
output, wherein the at least one first and second data objects
represent audio data or MIDI data.

Optionally, outputting the first and second data objects
comprises: playing the audio data or MIDI data, or storing
the audio data for playing, or storing the MIDI data.
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Optionally, the first data object corresponds to a first
musical note, and the second data object corresponds to a
second musical note.

Optionally, the parameter is a note duration and the first
and second values are note duration lengths.

Optionally, the parameter is one of: a note pitch, a note
dynamic, or a note articulation.

Optionally, the first data object further comprises a first
pitch value, wherein the first pitch value is a first note pitch.

Optionally, the first array of probabilities is influenced by
both the first value and the first pitch value.

Optionally, the second data object further comprises a
second pitch value, wherein the second pitch value is a
second note pitch.

Optionally, the first array of probabilities is generated by
a first neural network.

Optionally, the first array of probabilities is generated
based on a rule.

Optionally, the first data object corresponds to a first note
in a piece of music.

Optionally, the second data object corresponds to a second
note in a piece of music.

Optionally, the second position in the sequence directly
follows the first position in the sequence.

Optionally, the second position in the sequence does not
directly follow the first position in the sequence.

Optionally, the second array of probabilities is generated
by a second neural network.

Optionally, the second array of probabilities is based on a
rule.

Optionally, the second neural network is a recurrent
neural network.

Optionally, the second array of probabilities comprises a
plurality of vectors, each vector comprising at least one tag
having a probability associated therewith.

Optionally, a first tag defines whether the second value is
equal to the first value.

Optionally, a second tag identifies the first data object.

Optionally, a third tag identifies the first value.

Optionally, a fourth tag identifies the first position in the
sequence.

Optionally, a fifth tag identifies an interval between the
first data object and a preceding data object.

In another aspect, a computer-implemented method of
generating an input to train a neural network is provided.
The method comprises: receiving music data, the music data
corresponding to a plurality of data objects; identifying at
least one parameter of the music data, wherein a first data
object of the plurality of data objects and a second data
object of the plurality of data objects each have a value for
the at least one parameter; determining that the value of the
first data object is the same as the value of the second data
object; assigning at least one tag to at least one of the first
and second data objects to indicate the value; generating at
least one vector, the at least one vector comprising the at
least one tag and an indication of the data object to which the
at least one tag is assigned; and providing the at least one
vector as an input to train a neural network.

Optionally, the first and second data objects correspond to
musical notes.

Optionally, the parameter is a position, duration, interval
or pitch.

Optionally, the neural network is a recurrent neural net-
work.

In another aspect, a computer-implemented method of
generating a piece of music is provided. The method com-
prising the following steps: determining an initial time



US 11,887,566 B2

3

sequence of notes for the piece of music; determining at least
one probability distribution for selecting at least one subse-
quent note from a set of candidate notes; generating a
biasing output based on data of the initial sequence of notes;
and extending the initial sequence of notes with at least one
subsequent note selected from the set of candidate notes
according to the probability distribution and the biasing
output, wherein the biasing output biases the selection so as
to affect the likelihood of the selection resulting in a repeat
of'a musical structure element formed by the initial sequence
of notes.

Optionally, the steps constitute a current iteration of an
iterative music generation process.

In another aspect, a computer-implemented method of
extracting musical structure information from a piece of
music is provided. The method comprises: receiving the
piece of music at a processing stage; processing the piece of
music so as to identity therein a set of repeating sections,
each repeating section being a repeat of an earlier section of
the piece of music; and for each of the set of repeating
sections, determining at least one of: a musical duration
between the repeating section of music and the earlier
section of music, a type of the repeat, and a transposition
value between the earlier section and the repeating section.

Optionally, the type of repeat may be one of: a duration
repeat, an interval repeat and a duration interval repeat.

In another aspect, a computer-implemented method of
extracting musical structure information from a piece of
music is provided. The method comprises: receiving the
piece of music at a processing stage; and generating a vector
for each of a plurality of frames of the piece of music,
wherein each frame occurs within a measure of the piece of
music, and the vector comprises a strength indicator indi-
cating a musical strength of that frame within that measure,
which is determined based on the position of the frame
within the measure.

Optionally, the vector may comprise any of the additional
vector information disclosed herein.

Optionally, the strength value is a useful indicator of
where the frame lies within the piece in a musical context.

Optionally, the strength indicator may indicate a beat
strength, a measure strength or a hyper-beat strength, for
example.

Optionally, each vector may indicate whether or not the
frame is part of a repeating section.

Optionally, for a frame that is or forms part of a repeating
section, each vector may indicate at least one of: the type of
the repeat, the transposition value, and the musical duration
between the earlier section and the repeating section.

Optionally, the piece of music may be one of multiple
pieces of music, for which vectors are determined as above,
and which are used to train the structure generator. The
vector(s) may be used to train the structure generator, as
explained below. The structure network can be trained on
only the structure dataset and not on the actual pieces of
music, or optionally the pieces of music can be used for
training as well.

In another aspect, a computer-implemented method of
extracting musical structure information from a piece of
music is provided. The method comprises: receiving the
piece of music at a processing stage; processing the piece of
music so as to identity therein a plurality of repeating
sections, each repeating section being a repeat of an earlier
section of the piece of music; filtering the plurality of
repeating sections, to filter-out unwanted repeating sections
according to a set of filtering criteria.
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Optionally, the filtering may be performed in the manner
described below in relation to step s304.

Optionally, the piece of music may be in the form of a
musical transcript.

In another aspect, a computer system is provided com-
prising a data processing stage (in the form of one or more
processors, such as CPUs, GPUs etc.) and memory coupled
to the one or more processors and configured to store
executable instructions, which when executed on the one or
more processors cause the one or more processors to carry
out any of the steps disclosed herein.

In another aspect, a computer program product is pro-
vided comprising executable instructions stored on a com-
puter-readable storage medium, which are configured, when
executed on the one or more processors, to cause the one or
more processors to carry out any of the steps disclosed
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example, with reference to the drawings, of which:

FIG. 1 shows a flow diagram of a method for generating
new music data;

FIG. 2 shows a musical score comprising four crotchets;

FIG. 3 shows a flow diagram for a method of generating
a vector based on music data;

FIG. 4 shows a flow diagram for a method of filtering
repeats;

FIG. 5 shows a musical score divided into frames; and

FIG. 6 shows a musical score.

FIG. 7 shows an example probability array.

DETAILED DESCRIPTION

Disclosed herein is a method of providing one or more
outputs at one or more respective time instants. Particularly,
the outputs may be musical notes, either played or stored as
data, each note having its own time instant. At least some of
the musical notes are generated.

Traditionally, music is composed by a person who is
practised in composing music. Such a person composes
music based on musical theory and experience in order to
compose a piece of music that is aurally pleasing. This is a
specialised and time-consuming task. The methods dis-
closed herein allow music data, corresponding to musical
notes, to be generated without requiring input from a person
specialised in music composition. To achieve this, probabili-
ties are used to choose notes in a sequence, eventually
arriving at a complete sequence of notes that can be regarded
as a piece of music.

A first note is selected. This may be selected based on a
rule, probabilities, or any other method. For example, the
first note could always be the same, or it could be different
in each case. Next, a second note is selected. The selection
of the second note may be based on the first note. In this
case, a probability array may be used to provide an array of
probabilities that the second note could be, based on what
the first note is. Then, a value for the second note can be
selected from the probability array, with certain notes being
more likely to be selected than other notes due to such notes
having a higher probability. The probability array may be
termed a melody array generated by a melody generator.

Beneficially however, a second probability array may also
be used in conjunction with the melody array in order to bias
the outcome of the second note selection. The second
probability array may be termed a structure array generated
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by a structure generator. Unlike the melody array, the
structure array, provides an array of probabilities that some
element of the first note is repeated. In other words, the
structure generator provides a biasing output to increase the
likelihood that some element of the first note is repeated. For
example, the structure array may provide a probability that
the pitch of the second note is the same as the first note, or
that the duration of the second note is the same as the first
note. However, any element of the first note could be
repeated. The inventors of this application have realised that
repetition is an important aspect to make music aurally
pleasing and therefore, when the probabilities of the two
arrays are used together, the created sequence of notes is
more likely to be aurally pleasing since the structure array
provides probabilities for repetitions based on the big-
picture structure of the sequence of notes. Iterating this
forward, the structure array may, for example, provide a high
probability that the note to be chosen next has the same
duration as a note that was chosen 5 notes ago, or that any
other element of that note is now repeated. This probability
modifies/biases the probability provided by the melody array
such that the probability of the same duration being chosen
now is more likely. However, the biasing provided by the
structure generator does not completely override the deci-
sions made by the melody generator. Instead, in biases the
probabilistic output of the melody generator so that a
balance is struck between, on the one hand, respecting the
musically-motivated note “suggestions” by the melody gen-
erator and, on the other hand, imposing a degree of con-
vincing musical structure.

As previously mentioned, the structure array may provide
probabilities for any type of repetition of previous structure.
For example, there may be a staccato three bars back, and
the structure array may provide a high probability that a
staccato be repeated again. Any other repetition type may be
provided as a probability in the structure array.

Both the melody and structure generators may generate
arrays based on rules. For example, the melody array could
always provide a high probability that the pitch of a note to
be chosen is one tone higher than the previous note. The
structure array could always provide a high probability that
the duration of a note to be chosen is the same as (a repeat
of) the duration of a note two bars back. Any other rule could
be used.

Alternatively, one or both of the melody array and the
structure array could be generated using a Probabilistic
Sequence Model (PSM). A PSM is a component which
determines a probability distribution over a sequence of
values or items. This distribution can either be learned from
a dataset of example sequences or fixed a priori. By choos-
ing an appropriate dataset or encoding suitable expert
knowledge, a PSM can be made to reflect typical temporal
structures in the domain of interest, for example, typical
chord or note sequences in music.

A PSM can be used to generate sequences according to its
distribution by sampling one item at a time from the prob-
ability distribution over possible next items given a prefix of
items sampled so far. In other words, each item is selected
according to a probability distribution of possible items that
is generated by the PSM based on one or more of the items
that have been chosen already. Because the output of the
PSM is probabilistic, this introduces an element of variation
whereby the same input can give rise to different outputs.

Examples of PSMs include Markov chains, probabilistic
grammars, and recurrent neural networks with a probabilis-
tic final layer (SOFTMAX etc.). For the purposes of pro-
viding an example, the case of a using a recurrent neural
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network (RNN) will be discussed. However, any reference
to a neural network discussed herein could be replaced by
another kind of PSM, such as those examples provided
above. An RNN is a type of neural network for modelling
sequences and comprises an input layer, a hidden layer and
an output layer. The input and output of the RNN may
therefore correspond to the input layer and output layer
respectively. The hidden layer may be termed a stateful
component having a state. The state acts as a memory of the
past information encountered by the RNN while traversing
a sequence. At each location in the sequence, the RNN
makes use of both the input and the state of the stateful
component from the previous location to predict an output.
In particular, a Long-Short Term Memory (LSTM) network,
which is a type of RNN, may be particularly beneficial in the
below embodiments due to the presence of at least one
memory cell as part of the stateful component, the at least
one memory cell defining the state of the stateful compo-
nent, thereby providing greater temporal memory than a
standard RNN.

Such a hidden layer/stateful component may be termed an
LSTM layer, and such layers have been widely used in
RNNs to model speech signals, language token sequences
and musical sequences. Accordingly, the skilled person
would understand how to implement an LSTM network in
the context of the below embodiments. As would be under-
stood, given an input vector xt at a sequence location t, the
output of the LSTM layer h,, and its memory cell ¢,
(collectively, its state) from the previous location, the output
of the LSTM layer h, is computed and further propagated
into another layer (e.g. the output layer) of a larger model.

In the case of the melody generator, the neural network
could be trained to determine probabilities for a new note
based on specific values for a preceding note. The output
layer of the neural network may contain two groups of
softmax units, each group modelling a single probability
distribution over a set of mutually exclusive possibilities.
The first of these denotes the musical pitch of the note, and
the second denotes the duration of the note. In the case that
the neural network being an LSTM network, given the
output of the LSTM layer h, at any given location tin the
sequence, this is transformed into two independent prob-
ability distributions p, and 6t that together make up the
output later of the network. From these two distributions, the
probability of a certain note (i.e. a certain pitch and duration)
can be obtained by simply multiplying the probabilities of its
corresponding pitch and duration respectively.

In the case of the structure generator, the neural network
could be trained to determine probabilities that an element of
any preceding note, or a complete preceding note, occurs
again. Again, the output layer of the neural network may also
contain two groups of softmax units, however these would
represent different quantities that define aspects of structure
in particular (as will be explained below). The manner in
which these are combined however could be the same as for
the melody array described above. The use of neural net-
works allows the generation of notes to be improved yet
further, and to be more aurally pleasing, as the networks may
be trained on real music in order to learn the patterns and
structures present in real music.

A first aspect disclosed herein is a method of generating
new music data as shown in FIG. 1. In particular, the method
provides one or more outputs at one or more respective time
instants. The outputs may be the playing of musical notes, or
the storing of musical notes as music data.

The method may be performed by a processor, wherein
the music data is encoded digitally using MIDI format,
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although any other suitable format may be used, as would be
understood. Music data is data describing one or more
musical notes, which includes chords and rests.

The steps of FIG. 1 may begin based on existing music
data (e.g. an existing piece of music) corresponding to
multiple notes, or corresponding to only one musical note.
At step s101, a melody array is generated by a melody
generator. The melody array comprises an array of prob-
abilities based on the music data. The array of probabilities
comprises a list of probabilities that the next note has a
certain value for a certain parameter. For example, the array
may have a list of probabilities for the pitch of the next note.

At step 5102, a structure history is recorded. The structure
history is a list of values relating to the existing music data.
This step may take place before step s101, or indeed at the
same time as step s101.

At step s103, a structure probability array is generated by
a structure generator. The structure probability array com-
prises a list of probabilities that an element of the existing
structure, provided by the structure history, is repeated.

At step s104, the probabilities of the melody probability
array are modified/biased by the probabilities of the struc-
ture probability array, to provide a modified/biased prob-
ability array.

At step s105, one or more values of one or more param-
eters for the new note are selected based on the probabilities
provided by the modified/biased probability array.

At step 5106, new music data is generated, the new music
data corresponding to the selected new note.

At step 5107, the structure history of step s102 is updated.
The process of FIG. 1 may be repeated thereafter by
repeating a selection of the steps of FIG. 1, as will be
described below.

The steps of FIG. 1 will be described in more detail below.

Structure Probability Array

A structure probability array is an array (similar to a list
or table of data) comprising structure tags and associated
probability values. Tags will be explained in detail below.
The structure probability array may have only one tag, or it
may have more than one tag, for example combinations of
tags. Each tag or combination of tags has an associated
probability value.

The probability value is the probability that a new note
has the associated tag or combination of tags, as will be
explained.

The structure probability array may be generated in a
number of ways. For example, the structure probability array
could be based on a predefined rule. The predefined rule may
state that the probability of the new note having a duration
equal to a crotchet (duration=1) is 0.5, and the probability of
the new note having a duration equal to a quaver (dura-
tion=0.5) is also 0.5. In this example, the probability of the
duration of the new note being a crotchet or a quaver is
equal, however any other rule could be used and may
include any musical note duration with any probability.

Alternatively, the structure probability array may be gen-
erated using a structure generator, where the structure gen-
erator is a neural network, such as a recurrent neural network
that has been trained to generate a probability value asso-
ciated with a tag or combination of tags based on a vector,
for example a binary vector, the neural network being having
been trained on music data.

Training a Structure Neural Network

In the case that the structure generator is a neural network,
such a neural network must be trained in order to be able to
provide an appropriate output based on input data. A neural
network is trained on pre-existing data and then, once
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trained, may be used to provide an appropriate output based
on a new data input. Such a trained neural network may be
used to determine a probability associated with a new object
being the next object in a series of objects, based on a
preceding series of objects. Accordingly, in this case, the
structure neural network is trained using a pre-existing series
of objects in order to be able to determine a probability
associated with a new object to be added to the series.

The purpose of the training is to provide a trained struc-
ture neural network that is able to provide one or more
probabilities that the next, new object is expected to be a
repeat of a preceding object in the series. What constitutes
an expected repeat in this context is knowledge gained by
the structure neural network in training, which is encapsu-
lated in a set of model parameters of the structure neural
network that has been learned from a set of musical structure
training data. That is, the structure neural network learns,
from this training data, how musical structure is created
through repeating structure elements in the type of music
represented by this training data. That is, the structure neural
network learns what constitutes expected (musically con-
vincing) musical structure from its training data, and applies
that knowledge to the music generation task based on the
sequence of notes that has been determined so far. The
musical structure neural network can be taught about musi-
cal structure for different types/genres of music by providing
training data representative of the desired type/genre of
music.

Accordingly, the structure neural network is first trained
using training data. In this case, the training data is music
data since the structure neural network is being used to
determine one or more probabilities relating to musical
notes. Such training data may be regarded as a piece of
music for processing, and as such the training data may be
regarded as being received by the neural network at a
processing stage. FIG. 2 illustrates a measure or bar of music
201 comprising four crotchets 202 to 205, which is an
example of music data represented visually using conven-
tional modern musical notation. Throughout this disclosure,
the words “measure” and “bar” will be used interchangeably.
The training data is converted into a plurality of training
vectors using the steps of FIG. 3, described below, and the
training vectors are then processed by the structure neural
network in order to train it.

The conversion of training data into a plurality of training
vectors, as set out in FIG. 3 below, is an important and
unique step. However, once the training data has been
converted into a plurality of training vectors, it should be
noted that there are many ways in which the structure neural
network may process these training vectors, as would be
understood, in order to be considered a “trained” structure
neural network. One example way would be to use stochas-
tic gradient descent to minimise a given cost function
between subsequent vectors, as is known in the art.

FIG. 3 illustrates a flow diagram of a method of gener-
ating one or more vectors from music data, the vectors being
training vectors used as an input to train a neural network.
FIG. 3 is an embodiment that provides vectors to train a
neural network to identify duration repeats, i.e. repeats of
note duration, or duration interval repeats, i.c. repeats of a
note duration and interval from a previous note, as will be
explained below. Alternatively however, the vectors could
be used to train a neural network to identify any other type
of repeat in the music data.

For example, any process that is able to identify repetition
of structure, by marking a note or sections of notes as being
a repetition of any element of a previous note or section of
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notes for example, may be used. As previously discussed,
the element could be a note duration, note pitch, note
articulation, note dynamic or similar.

It should also be noted that the steps of FIG. 3 may be
altered and the specific steps discussed below are not
essential. Indeed, any process that is able to convert existing
music data into a list of vectors, the list of vectors providing
structural information, may be used as an input to train a
neural network.

Music data is first provided, and the music data is then
processed to determine at least one parameter for each note
of the music data, each parameter having a value. Example
parameters are note type, note duration, note pitch, note
interval, note position, or any other parameter depending on
the desired outcome of the training. The steps of FIG. 3 will
now be described in detail, with reference to these example
parameters.

Determining Parameter Value of the Music Data, s301

At step s301, parameters and associated values of each
note in the music data are determined, and each note is
labelled with the parameter values. In this example, one
parameter is a duration, and a duration value, corresponding
to the duration of the note in multiples of a crotchet (e.g. if
the note is a quaver it is given a duration value of 0.5 and
if it is a minim it is given a duration value of 2), is
determined. The duration could be measured in terms of any
other fixed duration, such as multiples of a quaver. Other
example parameters discussed below are pitch, interval and
position.

Optionally, an interval value of the interval parameter is
also determined for each note in the music data. If the note
being labelled is immediately preceded by another note, the
interval value corresponds to the difference in pitch between
the note being labelled and the immediately preceding note.
The labelling of notes includes labelling rest notes (known
simply as “rests” in conventional musical terms), which also
have a duration value, as would be understood. However,
rest notes do not have a pitch or interval value. If the note
being labelled is immediately preceded by a rest note, then
the interval value of the note corresponds to the difference
in pitch between the note being labelled and the note
immediately preceding the rest note. If the immediately
preceding note also does not have a pitch value (i.e. is also
a rest note), then the next immediately preceding note is
used.

The labelling of intervals may be based on the number of
scale degrees between the note being labelled and the
immediately preceding note. For example, the major scale in
western music, in the key of C major, comprises the notes C,
D, E, F, G, A and B. These notes have the scale degree
numbers 1, 2,3, 4, 5, 6 and 7, respectively. Let it be assumed
that the music data is in C major, and the note being labelled
has a pitch class of A (scale degree 6) and the immediately
preceding note has a pitch class of F (scale degree 4). The
interval value is the value of the scale degree of the note
being labelled minus the scale degree of the immediately
preceding note. Therefore, in this instance the interval value
is +2. If the note being labelled has a pitch class of A (scale
degree 6) and the immediately preceding note has a pitch
class of B (scale degree 7), the interval value would be -1.

In this instance, any pitch that is not included in the major
scale in the key of C major may be approximated to one of
the pitches included in the major scale. For example, let it be
assumed that the note being labelled has a pitch class of A
(scale degree 6) and the immediately preceding note has a
pitch class of F # (which is not a scale degree in the key of
C major). The pitch class of F #may be approximated to a
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pitch class of F (scale degree 4), since that is the nearest
pitch class in the major scale in the key of C major.
Therefore, in this instance the interval value would be +2.

Alternatively, the labelling of intervals may be based on
the number of tones or semitones between the note being
labelled and the immediately preceding note. For example,
the interval value may be based on the number of semitones
between the two notes. Therefore, in the above case, the
number of semitones between the A and the F #is +3, since
these notes are three semitones apart. Of course, any system
of defining intervals between notes may be used.

Each note of the music data has a position value. Note
position is defined herein by the duration from the start of
the music data up to the start of the note, in multiples of a
crotchet. For example, the position of the first note in a piece
of music is O (assuming no other musical characters precede
the first note) and the position of a crochet that is the last
note in a piece of music comprising four bars in 4/4 time is
15.

Let it be assumed that the measure or bar of music 202 in
FIG. 2 is the first bar of music in the key of C major. Table
1 below lists the position value, pitch, duration value and
interval value of each crotchet 202 to 205 in FIG. 2.

TABLE 1
Crotchet Position Pitch Duration Interval
202 0 A4 1 Null
203 1 ES 1 +4
204 2 A4 1 -4
205 3 ES 1 +4

Although the music of FIG. 2 only shows pitched notes,
the same methods disclosed herein could be applied to music
having rest notes (known as “rests” in musical terms) or
chords. A rest note would have a pitch of “null”. A chord is
a plurality of musical notes arranged to be played or output
at the same time instant, as would be understood. A chord
could be labelled based on only one of the notes of the chord,
for example the musically lowest note, or the multiple
pitches of each chord could be labelled in a single row entry.

Identifying Repeats, s302

Next, one or more repeats, if present, is identified. In this
example, the first type of repeat to be identified will be
referred to as a duration repeat. A duration repeat is a repeat
of a note (of any pitch) having the same duration as a
preceding note, or indeed it could be a repeat of a rest note
(i.e. a note having a null pitch value). A duration repeat may
also be a repeat of a series of notes having the same duration
as a series of preceding notes, the duration of each note in
the repeat being the same as a corresponding note in the
preceding series. As mentioned above however, any other
type of repeat could be identified, and durations repeats are
discussed here as one kind of repeat. In the example being
discussed, the notes in the series of notes are directly
adjacent notes, and may include rest notes. The preceding
note or notes may be immediately preceding, or may be at
any other earlier point in the music. The note or notes of the
duration repeat will be referred to as the repeat note or repeat
notes, as appropriate. The preceding note or notes of which
the duration repeat is a repeat will be referred to as the
original note or notes.

As a first option, the pitches of the repeat note(s) are not
taken into consideration when identifying a duration repeat.
That is to say that if a note having a duration of 1 is repeated,
and the repeat note also has a duration of 1 but has a different
pitch, the repeat is still a duration repeat.



US 11,887,566 B2

11

Alternatively, as a second option, whether the original
note(s) is a rest note or a note having a pitch (of any value)
may be taken into account. For example, if a first note is a
rest note with a duration of 1 (and no pitch value), and a
later, second note is a crotchet with a duration of 1 (and a
pitch value), the second note may not be regarded as a
duration repeat even though both notes have the same
duration. The aural interpretation of a rhythm which is
associated with something playing (note having a pitch
value) or not playing (note being a rest note, no pitch value)
is very different. Therefore, by taking into consideration
whether the original note has a pitch value or not (i.e.
whether the note is a rest or not), the identification of
duration repeats is improved.

Optionally, duration repeats of a single original note may
be ignored, and a threshold number of original notes may be
required. For example, only duration repeats that are a
duration repeat of a series of at least two original notes may
be identified. The threshold number of original notes could
be any number and predefined at the outset.

At step s302, a duration repeat in the music data is
identified, if present. Optionally, more than one duration
repeat or all duration repeats in the music data may be
identified.

Each note identified in the music data is considered in
turn. With reference to FIG. 2, let us first consider the
crotchet 202 listed in Table 1. The duration of this note (a
single crotchet=1) is repeated three times in bar 201. These
three repeats are therefore three separate duration repeats of
the crotchet 202, each duration repeat having a different
position (see Table 2 below). The duration in this example
is quantified in terms of crotchets beats, which for a 4/4 bar
is 4 beats. However, any other method of quantifying the
duration may be used, such as quaver beats or semiquaver
beats.

A duration repeat is defined by a repeat position value, a
look-back length and a repeat duration. The repeat position
value is defined as the position value of the first repeat note.
The look-back length is the difference between the position
value of the first repeat note and the position value of the
original note. Generally speaking, a look-back length may
be regarded as the musical duration between a repeating
section of music and an earlier section of music, the earlier
section of music being the section of music on which the
repeat is based. The repeat duration is equal to the note
duration of the original note. Alternatively, in the case of a
duration repeat being a repeat of a series of original notes,
the repeat duration is equal to the summed duration of all of
the notes in the original series of notes. Examples of a repeat
position value, a look-back length and a repeat duration for
a duration repeat will now be given with reference to FIG.
2.

The first duration repeat of crotchet 202 occurs at crotchet
203. This duration repeat has a repeat position value of 1, a
look-back length of 1 and a repeat duration of 1.

For example, all duration repeats of the music data of FIG.
2, and their duration repeat position values, look-back
lengths and repeat durations, are shown in Table 2 below.
The crotchets 202 to 205 that correspond to each duration
repeat are also indicated, although this information is deriv-
able from the repeat position values, look-back lengths and
repeat durations and so does not need to be recorded.
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TABLE 2

Repeat notes —

Position  Look-back length Repeat duration original notes
1 1 1 203202
2 2 1 204202
3 3 1 205202
2 1 1 204—203
3 2 1 205203
3 1 1 205204
2 2 2 (204, 205)—=(202, 203)

If no duration repeats are present in the music data, no
duration repeats are identified.

All identified duration repeats are added to a list of
repeats.

The term “repeat” as used herein is not limited to a
specific type of repeat of FIG. 3. In general, any element is
considered as a repeat of an earlier element if those elements
match each other, according to whatever matching criteria
are applied. For example, in addition or instead of the
duration repeat of a note or series of notes described above,
the repeat may be a repeated pitch or series of pitches, or
indeed a repeat of any other kind of musical element. Thus,
in this context, a repeat of a musical element means a
musical element that matches an earlier musical element
according to those matching criteria.

For example, a pattern detection algorithm such as
SIATEC or COSIATEC could be used.

Identifying Duration Interval Repeats, s303

At optional step s303, duration interval repeats are iden-
tified. In a first embodiment, a duration interval repeat is a
duration repeat in which the interval values of every repeat
note (excluding the first repeat note) is the same as, and in
the same order as, the interval values of the corresponding
original note(s). Since duration interval repeats depend on
the relations between notes in this way, duration interval
repeats must comprise at least two notes. For example, the
series of crotchets 204-205 is a duration repeat of the series
of crotchets 202-203. In additional, this duration repeat is
also a duration interval repeat as both crotchets 203 and 205
have an interval value of +4. This is true even though the
interval value of the crotchet 202 is null and the interval
value of the crotchet 204 is -4, since the interval value of the
first repeat note (crotchet 204 in this case) is not taken into
account when identifying duration interval repeats.

Alternatively, in a second embodiment, the interval value
of the first repeat note may be taken into account when
identifying duration interval repeats. In this case, the interval
value of the first repeat note may have to be equal to the
interval value of the first original note, such that the interval
value of every repeat note, including the first repeat note, is
the same as, and in the same order as, the interval values of
the corresponding original notes. In the example of FIG. 2,
no duration interval repeats would be identified in this case.

Similarly to a duration repeat, a duration interval repeat is
defined by a repeat position value, a look-back length and a
repeat duration.

Regarding a duration repeat of a series of original notes,
each repeat note (except the first repeat note in the case of
the first embodiment above) may have to have the same
interval value as its corresponding note in the series of
original notes for the duration repeat to be a duration interval
repeat.

As an example of the first embodiment, the pair of
crotchets 204 and 205 that are repeat notes repeating the pair
of crotchets 202 and 203 are a duration repeat and a duration
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interval repeat, as previously discussed. Crotchet 204, cor-
responding to original crotchet 202 in this instance, has an
interval value of -4 while crotchet 202 has an interval value
of null. However, crotchet 204 is the first repeat note and
therefore a mismatch of interval value is ignored in the first
embodiment. The fact that crotchets 203 and 205 have the
same interval value (+4) is sufficient to make this duration
repeat a duration interval repeat.

Optionally, a duration interval repeat may be further
defined by an interval transposition value. The interval
transposition value, like some of the other values discussed
herein, may take one of two values: true or false. A value of
true indicates that the condition is satisfied (in this case, true
indicates that the duration interval repeat has an interval
transposition), and a value of false indicates that the condi-
tion is not satisfied. If the first repeat note of a duration
interval repeat has the same pitch as the corresponding note
that is repeated, then the duration interval repeat is given an
interval transposition value of false, as the first repeat note
is not transposed up or down relative to the corresponding
original note. Necessarily, if the repeat is a duration interval
repeat and the transposition value is false, the second and all
other repeat notes of the duration interval repeat must also
not be transposed up or down relative to their corresponding
original notes. Otherwise, the duration interval repeat is
given an interval transposition value of true.

Alternatively, the interval transposition value could also
be represented by a number, the number being the number
of'tones, semitones or scale degrees of the transposition. For
example, an interval transposition value of +5 could repre-
sent a 5 semitone transposition between the first original
note and the duration interval first repeat note. Following
this example, an interval transposition value of O could
indicate that there is no transposition of the duration interval
repeat.

If no duration interval repeats are present in the music
data, no duration interval repeats are identified.

All duration interval repeats are added to the list of repeats
before moving to the next stage.

Table 3 below lists the position value, look-back length,
repeat duration and interval transposition value of the only
duration interval repeat present in the music data of FIG. 2.

TABLE 3

Look-back Repeat Interval repeat
length  duration transposition

Repeat notes —

Position original notes

2 2 2 False (204, 205)—(202, 203)

In practice, identifying duration repeats and duration
interval repeats may be achieved by converting labelled
music data into a string and identifying sub-strings that are
duration repeats and duration interval repeats within the
string, as would be understood. For example, a sequence of
notes of the music data may first be converted into two
strings, one corresponding to durations and the other to
intervals. In each of these strings, a string matching algo-
rithm may be used to find substrings that repeat. Single-note
repeats may be discarded, depending on preferences, and
only those repeats corresponding to certain lookbacks may
be retained, as explained. Optionally, a maximum note
duration may be set, and any notes longer than this may be
split into multiple notes of the same pitch. For example, the
maximum note duration may be two beats. This optional
step serves to limit the number of characters required to
represent the music data as a string.
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The outcome of 5304 is that every possible duration repeat
and duration interval repeat, for every note in the music, is
identified. Optionally, instead of identifying every possible
duration repeat and duration interval repeat, only those
repeats having a certain look-back length may be identified
at this stage. For example, in the case that only pre-defined
look-back lengths of 2 and 4 are permitted, any repeat that
has a look-back length other than 2 or 4 may be discarded.
This step may occur at another point in the process however,
as will be discussed. As previously mentioned, any other
type of repetition in the music structure could be identified,
and the above method is not limited to a specific repeat type.

Repeat Filtering, s304

At optional step s304, certain unwanted duration repeats
and duration interval repeats are deleted from the list of
repeats according to a set of filtering criteria. This process is
referred to a repeat filtering. Repeat filtering serves two
purposes: first, repeats with certain undesired characteris-
tics, such as look-backs deemed less musically important by
the inventors of this application, can be removed; second,
repeat filtering can optionally also be used to ensure that
each position in the music data only corresponds to, at most,
a single repeat type, which can simplify the data and thus
make it easier and faster for the neural network to process.
Therefore, for example, repeats with longer repeat durations
and look-back lengths may be retained over repeats with
shorter repeat durations and shorter look-back lengths. By
keeping repeats with longer repeat durations and look-back
lengths over those with shorter repeat durations and shorter
look-back lengths, more repeat information can be captured
since more notes will be tagged as being part of repeats. By
capturing more repeat information, the training of the neural
network may be improved.

FIG. 4 is a flow diagram illustrating the steps of a method
of repeat filtering.

At step s401, duration repeats and duration interval
repeats that do not have one or more predefined look-back
lengths are deleted from the list of repeats. In this case, the
filtering criteria therefore includes one or more look-back
lengths.

The predefined look-back lengths may be chosen using a
number of methods. For example, the predefined look-back
lengths may be chosen because they are common to a
specific genre or time signature of music. Thus, only pre-
defined look-backs are considered, reducing the number of
computations required to generate music and also improving
the quality of the generated music. For example, for a piece
of music in 4/4 time, predefined look-back lengths may be
05,0751, 1.5, 2,3, 4, 8 and 16, which would result in
repeats that make musical sense based on the 4/4 time
signature.

As an example, let it be assumed that the predefined
look-back lengths are 1 and 2 only.

Accordingly, and with reference to the list of repeats
identified from the music data of FIG. 2, the duration repeat
corresponding to crotchet 202 being repeated at crotchet
205, which has a look-back length of 3, is deleted from the
list of repeats as a look-back length of 3 is not one of the
predefined look-back lengths.

At step s402, the duration repeats in the list of repeats are
ordered highest to lowest in respect of repeat duration
followed by look-back length.

For example, applying steps s401 and s402 to the duration
repeats of Table 2 gives the order of look-back lengths and
repeat durations shown in Table 4 below (assuming that the
predefined look-back lengths are 1 and 2 only).
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TABLE 4
Position  Look-back length Repeat duration Crotchets in repeat
2 2 2 (204, 205)—(202, 203)
3 2 1 205203
2 2 1 204202
2 2 1 204203
3 1 1 205204
1 1 1 203202

At optional step s403, overlapping duration repeats are
deleted. Such overlapping duration repeats may be partially
overlapping, and may also include duration repeats com-
pletely contained within another duration repeat. Deleting
overlapping duration repeats comprises deleting all duration
repeats in the list that have at least one repeat note that is also
a repeat note that is part of a duration repeat higher up in the
ordered list. Certain overlapping duration repeats may be
deleted by removing duplications in repeat position value
from the list, the entry lower down in the list being deleted.
Many other ways could be used to remove repeat overlaps
such that there are no, or fewer, overlaps present. For
example, applying step s403 to Table 4, all duration repeats
except the duration repeats corresponding to crotchets (204,
205)—(202,203) and 203—202 are deleted.

At step s404, duration interval repeats in the list of repeats
that do not have a matching duration repeat are deleted. A
given duration interval repeat has a matching duration repeat
if: the list of repeats comprises a duration repeat with a
duration repeat look-back length equal to the duration inter-
val repeat look-back length, the repeat durations are equal,
and all of the duration interval repeat notes are also repeat
notes of the given duration repeat.

Optionally, steps s405 and s406 may then follow. At step
s405, the duration interval repeats in the list of repeats are
ordered highest to lowest in respect of duration interval
repeat duration, followed by duration interval repeat posi-
tion value, followed by duration interval repeat look-back
length.

At step s406, overlapping duration interval repeats are
deleted. This may be achieved using the same techniques as
those used above in step s403 for duration repeats, or any
other method may be used such that overlapping duration
interval repeats are deleted.

Although look-back length is used as an example filtering
criteria, other filtering criteria may be used depending on a
desired outcome.

The list of repeats is then stored for use in the next stage.

Division of Music Data into Frames, s305

Returning to FIG. 3, at step s305 the music data, after
every note of the music has been assessed to determine
whether it is part of a duration repeat, a duration interval
repeat or free music, is divided into ‘frames’.

The music data exists in bars of music, where all bars have
a fixed bar duration based on the time signature of the music
data, as would be understood. Optionally however, the
music data may include bars of music having different bar
lengths. A frame is a segment or portion of a bar of music,
where all frames have the same fixed frame duration.
Specifically, in this example each frame has the duration of
a semiquaver, although the duration may be shorter or longer
e.g. a demisemiquaver or quaver, respectively. When the
frame duration is a semiquaver, a bar of music in 4/4 time
comprises sixteen frames, as would be understood.

Each frame overlaps with a note (which could be a rest
note) of the music data. The overlapping note is the note
associated with the frame. For example, FIG. 5 illustrates a
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bar of music 501 in 4/4 time that has been divided into
sixteen frames 506 separated by dashed lines. The bar of
music comprises four notes: a dotted crotchet, followed by
a quaver, followed by a first crotchet, followed by a second
crotchet. The bar is also divided into groups of frames 502
to 505, where the frames of each group of frames are
associated with one of the notes. As can been seen, the group
of six frames 502 corresponds to the duration of the dotted
crotchet, the group of two frames 503 corresponds to the
duration of the quaver, the group of four frames 504 corre-
sponds to the duration of the first crotchet and the group of
four frames 505 corresponds the duration of the second
crotchet.

Each frame has a position tag value defining its position
relative to the music data. This is determined by the start
time of the frame, relative to the start of the piece of music,
in multiples of a crotchet. For example, the first frame has
a frame position tag value of 0; the second frame, assuming
a frame duration of a semiquaver, has a frame position tag
value 0of 0.25; and the first frame of the second bar, assuming
4/4 time, has a frame position tag value of 4. The timing
could be in multiples of other fixed note durations, for
example multiples of a quaver.

Frame Tagging, s306

At step s306, cach frame is tagged with the data accu-
mulated in steps s301 to s305.

A frame is tagged with the following data:

1) A duration repeat tag and a look-back tag. If the note
associated with the frame is the repeat note of a
duration repeat, as determined by the list of repeats
after repeat filtering, the frame is given the duration
repeat tag “true” and a look-back tag equal to the
look-back length of the associated note. Otherwise, the
frame is given the duration repeat tag “false” and a null
value look-back tag.

2) Optionally, a duration interval repeat tag. If the note
associated with the frame is also the repeat note of a
duration interval repeat, the frame is given the duration
interval repeat tag “true”. Otherwise the frame is given
the duration interval repeat tag “false”.

3) Optionally, a transposition tag. If the duration interval
repeat tag is “true” and the associated note has the
interval transposition value “true”, then the frame is
given the transposition tag “true”. If the duration inter-
val repeat tag is “true” and the associated note has the
interval repeat transposition value “false”, then the
transposition tag is set to “false”. Otherwise the trans-
position tag is set to a null value.

A frame that has a duration repeat tag set to “false” is a
frame that corresponds to a note that is considered not to be
part of a repeat in the music data. Such a note is known as
free music.

As mentioned, in the case that the neural network will be
used to provide probabilities for the repetition of other
structure features, the specific tags assigned would be dif-
ferent. For example, if the neural network will be used to
identify the repetition of certain articulation, the tags could
be a staccato tag, legato tag, accent tag or any other tag,
again with values of true or false. Any type of repetitive
structure could be identified base on a tagging of that
repeated structure.

Generate Vector, s307

At step s307, one or more vectors are generated to
represent the tags of step s306 in vector format. Each frame
is represented by a single vector.

Each vector may be a long vector split into subvectors. In
other words, each vector may be a concatenation of a
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plurality of subvectors. Each subvector may be a one-hot
subvector. Each subvector contains the frame tags of step
$306, as appropriate.

For example, the first subvector may be given by:

[fd,di, di,]
wherein each bit of the first subvector indicates which of the
following four categories a given frame of music belongs to:
(1) £—free music, (2) d—duration repeat, (3) di,,—duration-
interval repeat with transposition, (4) d,,—duration interval
repeat without transposition. As mentioned above, identify-
ing transposition may be optional, and in which case (3)
would become di—duration-interval repeat. In addition, the
first subvector may only indicate categories (1) and (2), i.e.
whether the frame of music is free music or a duration
repeat.

An example second subvector may be given by:

(£ 1o 1o7s: oo Lyss Laos 1300 Laos lsos Liso]
and contains bits that indicate the look-back length. In this
case, look-back lengths of 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0,
8.0, 16.0, quantified in terms of crotchets, are used as these
are appropriate for music with a 4/4 time signature. How-
ever, any look-back length may be used and any number of
different look-back lengths may have associated bits.
Indeed, the second subvector may only contain a single bit
to indicate a single look-back length (e.g. [, 1, ,]).

Optionally, a third subvector may also be included relat-
ing to the “beat strength” of the frame. “Beat strength” may
therefore also be regarded as “frame strength”. Beat strength
is used to describe the “strength” of that particular frame in
a musical context. In musical theory, different beats in a bar
have different musical strengths, as would be understood.
For example, in a bar divided into sixteen semi-quaver
frames, the first beat (frame) is the strongest, the ninth beat
is the next strongest, beats 5 and 13 are the next strongest,
beats 3, 7, 11 and 15 are the next strongest, and the
remaining even-numbered beats are the weakest. This deter-
mination of stronger and weaker beat strength is based on
established musical theory and varies depending on the
length and time signature of a bar.

To further illustrate this concept, two specific examples
are considered for a 4/4 bar containing 16 semiquavers.

Example 1: Based on a Fixed Beat Strength of the
Bar

In this case, every 4/4 bar has the same sequences of beat
strength, normally one value for the first beat (1st frame),
e.g. 0, one value for the 3rd crotchet beat (9th frame), e.g.
1, one value for the 2nd and 4th crotched beats (5th and 13th
frames), e.g. 2, and the same sequence for the semiquavers
in between (4 3 4 in this case). This will result in a sequence
like this for every bar (on a strength scale of 0 to 4, 0 being
the “strongest” beat):

0434243414342434

This is to reflect the fact that, for the four crotchet beats
of a 4/4 bar, the metrical strength is as follows:

STRONG (0) weak (2) HALF-STRONG (1) weak (2)

Example 2: Hyper-Beat Strength (Hyper BS)

This is a combination of the beat strength described above
(fixed beat strength), and the concept of each bar having its
own overall strength value. The result is that the beat
strength value of each frame is adjusted due to the influence
of a “bar strength”. In particular, the first frame of each bar
is changed to be equal to the bar strength for that bar, and the
remaining frames are also adjusted.
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The bar strengths for an 8-bar cycle may be, for example:

Bar Number 1 2 3 4 5 6 7 8
Bar Strength 0 3 2 3 1 3 2 )

Using the method below, the resultant hyper-beat strength
for each frame in the first bar will therefore result in:

Semiquaver 1 2 3 4 5 6 7 ...
Hyper BS 0 7(4+3) 63+3 7 5 7 6 ... 7

The reasoning for this will now be explained. Put another
way, in addition to beat strength within an individual bar, the
notion of a bar strength or “measure strength” is introduced,
which extends the concept of beat strength to bars them-
selves. For example, for bars divided into 16 semi-quavers,
such that the 16 frames in the bar would have beat strengths
0434243414342 43 4 respectively, the same idea
may be applied. For example, to generate melodies of
duration 8 bars, these 8 bars will have bar strengths 03 2 3
132 3. To combine these two features into a single encoding
indicating where the frame lies within a series of 8 bars (bar
strength), as well as where it is within the 16 frames of each
bars (beat strength):

1. Encode the first frame of each bar with the bar strength;

2. Encode every other frame of the bar by offsetting the

beat strength of each frame by the maximum bar
strength value of the bars in question, i.e. 3 in this case.

So, for the first bar, the hyper-beat strengths (combination
of bar strength and beat strength) will be:
0767576747675767

. . . and for the second bar, they will be:
3767576747675767

... and for the third bar:
2767576747675767

.. and so on.

Therefore, the hyper-beat strength method equates the
first frame of each bar to the same value as the bar strength
for that bar, and then offsets all other frames of each bar by
the maximum value of the bar strength for the bars in that
bar-cycle. In the case of the 8-bar cycle above, the maximum
bar strength value is 3, and therefore the beat strength value
of all frames (other than the first frame of each bar) is
increased by 3. Note that these are just illustrative and
non-exhaustive examples of how to encode the beat strength
and bar strength together, and the bar strengths, maximum
bar strength, and beat strengths used may be different.

Although the above example shows the bar strength value
being applied to every bar in the cycle, the bar strength may
only affect a subset of the bars of the cycle. For example,
taking an 8-bar cycle, a bar strength value between 0 and 3
may be used for bars 1 and 2, and for the rest of the bars of
the 8-bar cycle (e.g. bars 3+) the usual beat strengths could
be used as they are.

Assigning the vector to a frame within a bar of a piece of
music, wherein the vector comprises a strength value denot-
ing a strength of that frame, also has applications in other
contexts, such as training a melody generator or other
ML-based musical information generator.

A plurality of the vectors output at step s307 are used as
an input for the neural network to train the neural network,
as previously discussed.

In practice, many different sets of music data would be
used to train the neural network so that the neural network
is more well-trained. The neural network could be specific to
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a certain genre or style of music by only training the neural
network on that genre or style of music, or the neural
network may be trained on different genres and styles of
music. The neural network could be trained to identify any
kind of repetitive structure that could be found in music.

A more complicated example of the steps of FIG. 3 will
now be described in relation to FIG. 6. First, parameter
values for each note of the music data are determined and
labelled (step s301). Next, all duration repeats and duration
interval repeats are identified (steps s302 and s303). The
series of notes 606, 607 and 608 is repeated by the series of
notes 612, 613 and 614. The series of notes 612, 613 and 614
is therefore a duration repeat. This duration repeat has a
duration of 5.5, a position value of 8 and a look-back length
of 8. In the example music data of FIG. 6, there are other
additional duration repeats. Note 607 is a duration repeat of
note 606, with a duration of 2, a position value of 2 and a
look-back length of 2. Note 611 is a duration repeat of note
610, with a duration of 1, a position value of 7 and a
look-back length of 1. Note 612 is a duration repeat of both
note 607 and note 606, with a duration of 2, a position value
of 8 and respective look-back lengths of 6 and 8. In
additional, note 613 is a duration repeat of each of notes 612,
607 and 606. Note 614 is a duration repeat of note 608, with
a duration of 1.5, a position value of 12 and a look-back
length of 8.

There are also a number of duration interval repeats. The
series of notes 607 and 608 is repeated by the series of notes
613 and 614. As the notes 613 and 607 have the same
interval values (+1), this is a duration interval repeat. This
duration interval repeat has a duration of 3.5, a position
value of 10 and a look-back length of 8. Additionally, the
note 613 is a duration interval repeat of the note 607
(interval value +1, duration 2, position value 10, look-back
length 8), and the note 614 is a duration interval repeat of the
note 608 (interval value +1, duration 1.5, position value 12,
look-back length 8).

At repeat filtering step s304, some of the duration repeats
and the duration interval repeats are deleted, as set out in the
steps of FIG. 4.

At step 5305, the music data is divided into frames as
previously described.

At step s306, the frames are tagged as previously
described. For example, assuming that a look-back length of
8 is a predefined look-back length, the frames corresponding
to the series of notes 612, 613 and 614 will be tagged with
a duration repeat tag “true”, a duration interval repeat tag
“false”, a look-back length of 8 and a transposition tag null
value.

At step 5307, vectors are generated for the tagged frames
and used as training vectors to train a neural network.

Generating Music Data

FIG. 1 shows an iterative method of generating new music
data. In particular, certain steps of FIG. 1 may be repeated
to continuously add music data to existing music data, or to
music data that was generated in the last iteration of the
method. In the context of a neural network, the data for the
existing or previously-generated music data may comprise
internal state data of the structure neural network, which is
determined in dependence on the existing or previously-
generated music data. As such, the internal state data may be
updated at each iteration of the method based on the new
music data (e.g. the new note) selected at the end of that
iteration, in preparation for the next iteration. The music data
may comprise one or more outputs to be output at one or
more respective time instants. For example, the music data
may comprise a note or a series of notes, each note corre-
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sponding to an output to be output at a specific point in time
defined by the series of notes.

The generation of music data may be based on pre-
existing music data, or may include the generation of a first
note of music data. In other words, the generation of music
data may be the generation of one or more notes to add to
an existing series of notes, or may be the generation of the
first note of a new piece of music. Preferably, both may be
used together, such that the generation of music data com-
prises the generation of both the first note of the piece of
music and also one or more subsequent notes.

In the case that the first, starting note of the music data
must be generated, this may be achieved in various ways.
The starting note may be generated with a fixed, predefined
pitch and duration. Alternatively, the first, starting note may
be chosen from a melody probability array comprising an
array of probabilities associated with a plurality of notes.
The selection of notes may by limited to a certain range, for
example two octaves.

Generating Melody Probability Array, S101

When generating new music data, at step s101 a melody
probability array is generated. The melody probability array
comprises new note pitch values, wherein each new note
pitch value has at least one associated new note duration,
each pitch value and note duration combination having an
associated melody probability value. The probability value
may be based on the music data. Specifically, the melody
probability value may be based on a pitch value and/or a
duration value of at least one preceding note of the music
data, and may be based on the pitch value and/or duration
value of all preceding notes. The preceding note may be the
immediately preceding note, or any other preceding note.

Alternatively, the melody probability value may not be
based on any preceding notes (or any preceding music data),
and could be a fixed probability or a random probability for
each new note. In this case, the melody probability array
could be a predefined list of notes and probabilities for each
pitch and duration combination. This may be used particu-
larly in the case of choosing the starting note of music data.

The new note pitch value describes the pitch of a note. For
example, the melody new note pitch value may be C4, E5,
F #5 and so on, where the letter designates the pitch class
and the number designates the octave, as would be under-
stood. The new note duration takes the value of a duration
of a note such as a semi-quaver, quaver, crotchet, dotted
crotchet, and so on. The new note duration may be quantified
relative to the duration of a crotchet, the crotchet having a
duration of 1. The melody probability value is the probabil-
ity of the new note having a certain pitch value and a certain
duration.

The melody probability array may be generated by a
melody generator, where the melody generator comprises a
neural network, such as a recurrent neural network that has
been trained to generate a melody probability array based on
durations and pitches of notes identified in music data. Such
a melody probability array may be generated by the neural
network trained to provide a probability for the duration and
pitch of a new note based on the duration and pitch of a
preceding note. The preceding note could be the immedi-
ately preceding note, or any other preceding note.

For example, with an RNN, the probability distribution of
the melody probability array could be conditioned by the
entire sequence of past notes. What constitutes a musically
convincing note sequence is knowledge that is gained by the
melody generator in training, and is encapsulated in a set of
model parameters of the melody generator determined from
a set of melody training data in training (and will depend on
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the type of melody data the melody generator is exposed to).
Note that the learning objective of the melody generator is
different to that of the structure generator: the melody
generator is being trained to learn how to generate sequences
of notes in a musical way, without consideration to the
overall structure of the music, whereas the structure gen-
erator is being trained to learn to generate musical struc-
ture—in essence, similarity between contiguous or non-
contiguous sections (e.g. bars) of the piece of music.

To achieve this, the neural network of the melody gen-
erator may be trained using an input of training vectors that
have tags for the pitch and duration of each frame and, based
on those training vectors, the neural network could be
arranged to output an array of probabilities for the pitch and
duration of a next note given the pitch and duration of a
preceding note. As an example, for a given preceding note
A, the trained neural network could provide probabilities for
the next note to be one of A, B, C, D or E, each of these notes
having a certain probability based on the note progressions
observed by the neural network in the training vectors. As
another example, for a given series of preceding notes A, B,
C, the trained neural network could provide probabilities for
the next note to be A, B or C. Although the neural network
is trained to provide probabilities based on preceding notes,
the neural network may still provide a probability array for
the starting note of music data by simply inputting a null
value into the network and sampling from the resultant array.
For example, the selection of a note described in relation to
the array of Table 5 below could be used.

Alternatively, the melody probability array may be gen-
erated by a set of predefined rules that determines a prob-
ability based on the duration and/or pitch of a preceding
note. For example, as set out in column 7 lines 28 to 65 of
U.S. Pat. No. 9,361,869 B2, a probability array as shown in
FIG. 7 may be used. Each p in FIG. 7 represents an
individual probability. Each of these probabilities may either
be different from the other probabilities in the array or be
equal to some or all of the other probabilities in the array.
Each row of probabilities p in FIG. 7 represents a set of
probabilities to be used given a particular duration of a
preceding data object (note). Each column of probabilities in
FIG. 7 represents a set of probabilities that a particular
duration will be selected for the data object (note) being
generated. As an example, a probability of the melody
probability array of FIG. 7 may be selected using a weight-
ing associated with various outcomes, as described in rela-
tion to the array of Table 5 below. To determine the duration
of the note being generated, a row of the probability array is
selected based on the duration of the preceding note. For
example, if the duration of the preceding note was 2, the
fourth row is selected. The selected row of the probability
array represents the various likelihoods of the different
possible durations for the next note. A particular duration
may be selected for the note being generated. The same
process can also be used to select the pitch of the note, using
a similar array to that of FIG. 7, specific to pitch.

Other rules and selection methods may be used instead of
the above method associated with FIG. 7. For example, the
probability array could contain probabilities based on the
pitch and/or duration of more than one preceding note, or
indeed all preceding notes. Selection of probabilities from
the array may also be achieved in any other manner that
ensures that higher probability pitches/durations are more
likely to be selected than lower probability pitches/dura-
tions.

Accordingly, the melody probability array provides a
melody probability value of every possible new note pitch
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and duration (including rest notes). For practicality, the
possible new notes may be limited to notes within a certain
octave range of the preceding note or notes.

In an embodiment, the music data comprises at least one
note and, at step 101, a melody probability array is generated
to output an array of probabilities for a note to be added to
the music data. As an example of music data to which a note
is to be added, the music data of FIG. 6 will be again
discussed. Although FIG. 6 was previously discussed in
relation to training a neural network, FIG. 6 is being
discussed here purely as an example of music data to which
a note is to be added. As previously described, bar 602
comprises an A4 minim 606 followed by a B4 minim 607.
Bar 603 comprises a C5 dotted crotchet 608 followed by a
G4 quaver 609 followed by an F4 crotchet 610 followed by
a G4 crotchet 611. Bar 604 comprises an A4 minim 612
followed by a B4 minim 613. Incomplete bar 605 comprises
a C5 dotted crotchet 614. Label 615 of FIG. 6 represents the
location for a new note to be added to the music data.

Based on the piece of music of FIG. 6, the melody
probability array outputs a plurality of probabilities for the
new note. For example, the melody probability array may
comprise a first melody probability value of 0.6 associated
with a first note pitch value of G4 and a note duration of a
quaver (i.e. 0.5 crotchets); a second melody probability
value of 0.1 associated with a note pitch value of G4 and a
note duration of a crotchet; and a third melody probability
value of 0.3 associated with a note pitch value of F4 and a
note duration of a quaver (i.e. 0.5 crotchets). Such a melody
probability array is shown in Table 5 below.

TABLE 5
Note Duration Probability
G4 0.5 0.6
G4 1 0.1
F4 0.5 0.3

Selection of a note based on the example above melody
probability array (generated by a neural network or based on
predefined rules) may be achieved as set out, for example in
U.S. Pat. No. 9,361,869 B2 in the name of Jukedeck Ltd.
The above probability array represents three different out-
comes: G4 quaver, G4 crotchet and F4 quaver. The list of
probabilities is assigned numbers representing the listed
probabilities. For the above listed probabilities, the numbers
0.6, 0.7 and 1.0 may be assigned to the outcomes G4 quaver,
G4 crotchet and F4 quaver respectively. To select one of
these outcomes, a random number between 0 and 1 is
generated. The random number is compared with each
assigned number in the probability array, and the outcome
corresponding to the first assigned number that is greater
than the random number is selected. For example, if the
random number generated is 0.85, the outcome F4 quaver is
selected as 1.0 is the first number greater than 0.85. The
probability array is therefore a weighting associated with
various outcomes. It can be seen that, in the above example,
the outcome G4 quaver is the most likely as any random
number between 0 and 0.6 would result in selection of the
G4 quaver.

Selection of a note from the melody probability array
could be achieved in a number of ways however, and is not
limited to the above method. Any method of choosing an
object from an array of objects having different probabilities
could be used, with objects having a higher probability being
chosen more often than objects having a lower probability,



US 11,887,566 B2

23

as would be understood. For example, Inverse Transform
Sampling could be used, as is well-known in the art.

The above selection method could also be used to choose
the starting note, the only difference being that the array of
probabilities provided by the melody probability array is not
based on existing music data. For example, the listed prob-
abilities above could be random or fixed, or could be output
by providing a null input to a neural network, as described.

Recording Structure History, s102

As step s102, a structure history of the music data
describing preceding notes is recorded. The structure history
is a series of vectors containing frame tags (wherein each
vector may be further split into subvectors, as described
above), such vectors and frame tags containing the same
type of information such vectors and frame tags contained in
the training process when using training data. However,
where in the training process the vectors represent the
structure of the training data, in the music generation process
of FIG. 1 they represent the structure of the generated music
data.

In an embodiment, the music data corresponds to the first,
starting note of a piece of music, the starting note being
generated and selected using any of the above-described
methods. In this embodiment, step s102 takes place after the
first, starting note of new music data has been generated. The
number of vectors required to represent the new music data
is added to the structure history. At step s102, the structure
history is recorded by identifying the number of frames that
represent the starting note, and adding each frame to the
structure history as a corresponding vector. Each corre-
sponding vector has the same format as the vectors
described in relation to step s307 of FIG. 3. For example, if
the music data corresponds to a starting note having a
duration of 1.5 crotchets (i.e. a dotted crotchet), 6 frames are
identified, in the case that a frame has a duration of a
semiquaver. Now that the 6 frames have been identified,
such frames are tagged as free music in their corresponding
vectors as at this point there are no structure repeats to be
identified. 6 vectors are therefore recorded as free music in
the structure history.

One way of tagging a frame as free music may be
assigning a null value to any structure tag in the vector, for
example a duration repeat tag. Alternatively, a specific free
music tag in the vector may be assigned a value of true.
Indeed, many other ways may be used to tag a frame as
corresponding to free music.

As will be described later, in the case that the music data
corresponds to the first, starting note of a piece of music, the
step s102 is only performed once based on that music data.
Any subsequent update and recording of the structure his-
tory after step s102 is handled by step s107.

Alternatively, in another embodiment, in the case that the
music data corresponds to multiple notes provided without
using the steps of FIG. 1 to generate this music data,
recording the structure history comprises performing the
steps s301-s307 of FIG. 3 to arrive at a list of vectors to
record the structure history. In other words, parameter values
of the music data are identified and labelled, repeats are
identified, the repeats are optionally filtered, the data is
divided into frames and tagged, and vectors are generated
for the frames. The vectors generated in this case are the
vectors for the frames of the preceding notes, and such
vectors represent the structure of the music data for the
preceding notes. Again, any subsequent update and record-
ing of the structure history after this step is handled by step
s107.
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Once recorded, the vectors for the structure history are
used as an input to the structure neural network, for the
current iteration, to generate a structure probability array, as
will be described below. The vectors of the structure history
may therefore be used directly to update a structure neural
network being used in the music generation process. Alter-
natively, the vectors of the structure history may be stored in
a database in computer memory.

Although step s102 is shown in FIG. 1 as following step
s101, the order of these steps could be reversed or indeed
they could be simultaneous.

Generating Structure Probability Array, s103

At step s103, a structure probability array based on music
data is generated by the structure generator. Such an output
may be termed a biasing output as it is used to bias the
probabilities of the melody generator towards a repetition of
structure. The biasing output in the current iteration may be
generated based on one, two or all of the following: one or
more notes of the initial sequence of notes (such as the most
recent note or notes of the sequence, as selected in the
previous iteration) or one or more vectors determined for
that/those note(s) as received at the input in the current
iteration, data of the internal state of the neural network, and
data of the output of the structure generator in the previous
iteration. As noted, the vector may represent musical struc-
ture implied by the note(s) to which it relates.

In this respect, it is noted that whilst “the initial sequence
of notes” can mean a note or notes of the initial sequence of
notes, it can also mean data that has been derived from a note
or notes thereof, such as the internal state or the earlier
output (or a combination of both/all three), i.e. data that is
influenced by the note(s).

The structure probability array may be generated using a
trained neural network based on using the structure history
vectors of s102 as an input. The structure generator input
may receive data of the note or notes of the piece of music
so far (such as a vector or vectors determined for one or
more of the notes), based on which the biasing output is
generated in the current iteration of the method. Specifically,
the structure generator may receive one or more vectors
determined for the initial sequence of notes (i.e. the piece of
music so far) as previously described, based on which the
biasing output is generated in the current iteration.

There may be two inputs to the structure generator at each
point in time:

(1) The musical structure in the form of one or more
vectors (that is, one or more vectors in the encoding used in
the dataset that the structure generator is familiar with, and
uses in its own training phase—see above) implied by the
most recent melody note generated by the melody generator.
There may be an intermediate translation step external to
both the structure generator and the melody generator that
translates the note generated by the melody generator and
the element of musical structure (e.g. duration repeat of
lookback 8, duration-interval repeat of lookback 16, or other
repeat type—see below) this note implies into a feature
vector that can be interpreted by the structure generator.

(2) The structure generator’s own internal state (which
may contain knowledge of musical structure implied by one
or more, or all, previously-generated melody notes).

Alternatively, the trained neural network may not actually
take the notes or vectors as input. Instead, the neural network
may rely only on its output in a previous iteration, and use
that as its current input together with its internal state.

The structure generator provides the structure probability
array as a biasing output in order to bias the probabilities
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generated by the melody generator to increase the likelihood
that new music data is a repeat of previous music data.

The trained neural network is used to generate a structure
probability array. The vectors of the structure history of step
$102 are used as an input to the neural network. Depending
on the number of notes described by the music data at this
point, the structure history may, for example, include one or
more vectors corresponding to a single note having a dura-
tion and pitch, or a plurality of vectors corresponding to a
series of notes each having a duration and pitch.

First, the structure neural network is provided with one or
more vectors that make up the structure history. Based on the
vector(s) of the structure history, the neural network outputs
an array of probabilities (the structure probability array) for
each possible combination of tags for the next frame in the
sequence, optionally only for predefined look-back dura-
tions. Using the example tags discussed so far, the array
output by the neural network therefore contains probabilities
for each combination of the following tags to be present in
the next frame:

Duration repeat tag true

Duration repeat tag false

Optionally, duration interval tag true

Optionally, duration interval tag false

Look-back length tag, optionally only for each of the

predefined look-back durations

Optionally, transposition tag true

Optionally, transposition tag false

Entries in the array corresponding to look-backs that
either look back to before the start of the music data or don’t
look back to the start of a note are deleted.

In the case that the music data corresponds to the starting
note only, i.e. the first iteration of the method, the structure
history is simply vectors tagged as free music. Based on
these input vectors, the neural network outputs an array of
probabilities (structure probability array) for each possible
combination of tags for the next frame in the sequence,
based on the fact that all preceding vectors/frames are
tagged as free music. Alternatively, a zero vector could be
used as input in this case if it does not conflict with any
assumptions regarding the data, or a default initial input may
be used.

Continuing with step s103, the vectors in the structure
history are used as an input to the trained neural network,
which outputs/generates a structure probability array (bias-
ing array) for the next frame in the music. Again, using the
example of FIG. 6 purely as an example of music data to
which a note may be added, this is frame 615. For example,
the trained neural network may output a structure probability
array that comprises the assigned probabilities listed in Table
6 below:

TABLE 6
Duration Duration Look-back
repeat interval repeat length Transposition  Probability
True False 8 Null 0.4
True False 7.5 Null 0.1
True False 6.5 Null 0.1
True True 8 False 0.3
False False Null Null 0.1

The biasing output may alternatively or additionally (and
possibly primarily) be generated in the current iteration
based on an output of the structure generator in a previous
iteration. That output may comprise a biasing output gen-
erated in the previous iteration.
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Modifying Probabilities in Melody Probability Array,
s104

At step s104, the probabilities in the melody probability
array are modified or biased by combining one or more
probabilities of the structure probability array with the
probabilities in the melody probability array. The structure
probability array is a list of tags and associated probabilities,
as previously described, for example as shown in Table 6.

It is possible to determine the note or notes satistying the
tags in the structure probability array. In the example of FIG.
6 and in the context of generating tags for frame 615, with
reference to the tag combinations of Table 6, in descending
order starting from the combination at the top of the table,
the first tag combination corresponds to the G4 quaver note
609 and is satisfied by a quaver of any pitch (because of the
“false” duration interval repeat tag); the second tag combi-
nation corresponds to the F4 crotchet note 610 and is
satisfied by any crotchet; the third tag combination corre-
sponds to the G4 crotchet note 611 and is satisfied by any
crotchet; the fourth tag combination corresponds to the G4
quaver note 609 and is satisfied by a G quaver (in any
octave, to satisfy the requirement of having the same interval
value) and the fifth tag combination corresponds to free
music and is satisfied by any note that is not a duration repeat
or duration interval repeat.

Now that we have determined the probabilities that the
structure probability array assigns to the various possible
durations or durations and pitches of the note of frame 615,
these are used to influence the probabilities provided by the
melody generator such that the probability of each duration
and pitch combination provided by the melody generator is
adjusted. As mentioned above, the melody generator pro-
vides a melody probability array comprising new note pitch
values, wherein each new note pitch value has an associated
new note duration and an associated melody probability
value. The probabilities of the melody probability array are
combined with (in other words, biased by) the one or more
probabilities of the structure probability array to provide a
modified melody probability array. These probabilities may
be combined in a number of ways to achieve this result.

For example, for a given melody probability array, the
number of notes of the melody probability array that satisfy
a certain tag combination of the structure probability array
is used to modify the probability of that tag combination.

As an example, let’s say that the melody probability array
provides probabilities for the following notes: a G4 quaver,
an A5 quaver, an F4 crotchet and an ES crotchet. Let’s also
say that the structure probability array provides a probability
of 0.7 for the tag combination: duration repeat true, look-
back length 2. Finally, let’s say that the duration of the note
that corresponds to a look-back length 2 is 1, i.e. the original
note is a crotchet. In this example, the melody probability
array has provided probabilities for two crotchets: F4 and
E5. Accordingly, in this case the 0.7 probability provided by
the structure probability array for the particular tag combi-
nation is divided by the number of crotchets, i.e. 2, to result
in a shared structure probability of 0.35 that the next note has
a duration of 1 (crotchet). In other words, the probability of
the tag combination is divided by the number of notes (of the
melody array) that satisfy that combination.

The melody probability value for each crotchet, regard-
less of pitch, is then multiplied by the shared structure
probability to generate a modified melody probability value
for those given notes. The same process is applied to every
note in the melody probability array. As structure probabili-
ties for every note duration in the melody array are deter-
mined, the same process is applied to every note in the
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melody probability array such that the probability of each
note in the melody probability array is multiplied by a
probability value. Therefore, even though all melody prob-
abilities are decreased (by virtue of each shared structure
probability being less than 1), the probability of notes having
a lower shared structure probability is decreased to a greater
extent than notes having a higher shared structure probabil-
ity.

For example, the melody probability array may initially
assign the same probability value to two different note
durations, making both note durations equally likely to be
the next note. However, if the structure array has assigned a
higher shared structure probability value to one note dura-
tion than the other, after multiplication the two note dura-
tions will have different probabilities. The note duration with
the higher probability is therefore more likely to be selected
as the note duration of the next note.

Alternatively, the modified probability array may be gen-
erated as a sum of the multiple probability values. The sum
may be a weighted sum, where each of the repeat type
probabilities is weighted by the inverse of a cumulative
probability of the notes resulting in a repeating musical
structure of that type. As another alternative, a maximum of
the multiple probabilities may be used.

The above is only some example methods of combining
two probability arrays. Any other method could be used such
that the probabilities in one array affect those in the other,
and the specific method explained above is not essential. A
more detailed example is provided below.

Selecting New Note Pitch and Duration from Modified
Melody Probability Array, s105

At step s104, a new note having a new note pitch value
and a new note duration value is selected from the modified
melody probability array. The new note may be chosen from
the modified melody probability array in any manner, for
example as set-out in relation to the array of Table 5
discussed previously, using a weighting method combined
with a random number. As an example, the modified melody
probability array may be sampled to select a new note, or the
new note may simply be chosen by selecting the vector or
vectors with the highest probability. Alternatively, the new
note may be chosen using any other method that ensures that
notes with a higher probability are more likely to be chosen
than notes with a lower probability.

As the modified probability array is biased by the prob-
abilities of the structure array, the likelihood that the new
note has an element that is a repeat of an element of a
previous note may be increased if, based on the training data
used to train the structure network, the circumstances pro-
vided at the time indicate that a repeat of that element is
expected.

Adding Music Data, s106

At step 5106, the new note is added to the music data,
wherein the new note has the selected new note pitch value
and new note duration value. Specifically, the new note is
added in sequence to the existing sequence of notes in the
music data, such that the new note appears next in the
sequence. Step s106 may also include the outputting of the
notes of the music data in respective positions in a sequence
of notes. A first note may provide a first portion of the output,
and subsequent notes may provide subsequent portions of
the output. The music data defining the notes may represent
audio data or MIDI data, and outputting the notes may
comprise playing the audio data or MIDI data. Alternatively,
outputting the audio data or MIDI data may be storing the
audio data for playing, or storing the MIDI data.
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Updating the Structure History, s107

After the new note is added to the music data, the structure
history must be updated by assigning one or more vectors to
the new note. In this way, the structure history is up-to-date
and may be used as an input to the structure neural network
to allow the process to be repeated, as discussed below. At
step s107, the structure history is updated by adding new
vectors to the structure history that represent the structure of
the new music data.

To add new vectors to the structure history, the frame tags
that those new vectors should contain must first be deter-
mined. This may be achieved by modifying the structure
probability array of step s103 to create a modified structure
probability array. In order to create the modified structure
probability array, any combinations of tags in the structure
probability array of step s103 that are incompatible with the
selected new note pitch value and new note duration value
are removed. In this way, the modified structure probability
array does not contain any combinations of tags that repre-
sent repeats that the new note could not be considered to be
a part of.

The neural network for generating the structure array may
comprise at least one stateful component having an internal
state, which is updated at each iteration of the method based
on the internal state at the end of each iteration and the
musical structure implied by the note or notes selected in the
previous iteration. That is, a new internal state for the
stateful component may be determined based on a current
internal state of the stateful component (i.e. the state of the
stateful component at the end of the iteration) and (indi-
rectly) the note or notes that have just been selected/added.

In the example of FIG. 6 and in the context of having
already generated new music data for frame 615, let us
assume that the generated music data at frame 615 is a G4
quaver. In this instance, if the structure probability array of
step s103 contained a combination of tags with a duration
repeat tag “true”, a duration interval repeat tag “true”, a
look-back length of 8 and a transposition tag “false”, this
combination of tags would be kept in the modified structure
probability array, because this combination of tags repre-
sents a repeat of the G4 quaver 609, which is consistent with
the generated G4 quaver. However, if the structure prob-
ability array of step s103 contained a combination of tags
with a duration repeat tag “true”, a duration interval repeat
tag “false” and a look-back length of 1.5, this combination
of tags would not be included in the modified structure
probability array, because this combination of tags repre-
sents a repeat of the dotted crotchet 614, which is inconsis-
tent with the generated G4 quaver.

At this point, the modified structure probability array
contains a list of all tag combinations that are compatible
with the newly generated music data, in this case a G4
quaver. However, in order for the structure history to be
up-to-date, only one combination of tags should be assigned
to the frames corresponding to the new music data.

Therefore, a single combination of tags of the modified
structure probability array is then selected from the modified
structure probability array. The single combination of tags
may be selected in a number of ways. The selection may be
based on the distribution of probabilities of combinations of
tags in the modified structure probability array. For example,
the single combination of tags may be selected using the
previously described probability weighting and random
number method discussed in relation to Table 5, which
makes the combination of tags with the highest probability
the most likely to be selected. Alternatively, the combination
of tags having the highest probability may simply be
selected. Alternatively, each combination of tags of the
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modified structure probability array may be chosen at ran-
dom, irrespective of their probabilities.

Alternatively, a combination of tags may be selected
without the use of a modified structure probability array. For
example, a combination of tags may be selected according
to hard-coded rules that select a tag combination compatible
with the new note that was added to the music data.

Once a combination of tags has been selected from the
modified structure probability array, a vector is created for
each frame of the new music data, wherein each vector has
the same format as the vector at s307, and the selected
combination of tags is stored in each vector. These vectors
are then added to the structure history.

A detailed example of steps s104-s107 will now be
provided. Once trained on the above described structure
dataset, the neural network of the structure generator (struc-
ture model M,) is then used with the neural network of the
melody generator (melody model M,,). At time t (that is,
given the history of notes generated up to time t), the model
M,, predicts a probability distribution P, over a set of notes
N. At the same time, given the history of repeats generated
so far, the structure model M, predicts a probability distri-
bution Q, over a set of possible repeats I1, which includes an
element 7, representing ‘free music’. Each note vEN can be
consistent with a subset IL,” of these repeats, which will
always include 7, meaning that every note is consistent with
‘free music’. The structure model influences the prediction
P, by modifying the probability of each note according to the
probabilities of the repeats with which it is consistent. Let
@t:NxII—{0, 1} be a function such that ¢,(v, ®)=1 when
note v is consistent with repeat m at time t and O otherwise.
In terms of this we can express I1,” as {n€I1¢,(v, ®)=1}, and
further define N,;"={vENI¢,(v, m)=1}, which is the set of
notes consistent with w. Each note v is then assigned a
weight:

Qi)

M

W =Pm >

71}

where 1L,"=2%, - \«P (v). In this way, the relative probability
of a note v is increased when it is consistent with repeat(s)
to which M has assigned high probability. It is important to
note that, in this example, M,, and M, operate at different
temporal resolutions—note-level and semiquaver frame-
level respectively—and that this difference becomes signifi-
cant here. Suppose note v is of duration Av=t,0, where d is
the frame duration and T, is the number of frames occupied
by v. Ideally, in order to get an accurate estimate of the joint
probability of the note v and the repeat m, one should
consider the probability that M, assigns to T, consecutive
frames of m. This would be expressed as:

@

Qri(7)

T
Hivie

-1
wm=rPm > T]

well} k=0

However, it has been found that the single-step approxi-
mation (1) works well in practice and is less computationally
intensive than (2). Next, the weight distribution W, is nor-
malised to obtain a probability distribution Rt:

Wi (v)
ZveN Wi(v) '

R(v) = @
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We may now sample a note v, from this distribution and
update the internal state of the melodic model M,, with this
observation. It remains to update the state of the structure
model M, with some observed repeat. The note v, sampled
attime t could be associated with any of the repeats that were
consistent with it. One note may be chosen by sampling m,
from a distribution S, over I1,'” defined as:

(7))
ZW’EI'[,V’ Qi)

Si(m) = @

At this point the two models are misaligned due to the
different time-scales they operate in, with M,, being z
semiquaver frames ahead of M,. Since each update of the
state of M, takes it ahead by just one semi-quaver frame, it
is necessary to update M, T times repeatedly with the same
structure vector so that it is once again aligned with M,,,. At
the end of the process described above, we have a melody
note sampled from the melody model that has been influ-
enced or biased by the neural network of the structure
generator. This neural network has also updated its own state
according to the sampled note and is ready to influence/bias
the choice of next note.

The above detailed example should be treated as such, and
there are other ways in which these steps may be achieved
that do not require the specific steps and formulae outlined
above. In particular, the formulae shown in section 4.2 of the
enclosed Annex may also be used, this Annex being incor-
porated by reference in its entirety.

Generating Further New Music Data—Subsequent Itera-
tions

A selection of the steps of FIG. 1 may be repeated to
generate further new music data, i.e. continue the piece of
music, in subsequent iterations of the method. Each succes-
sive new note may be added to the existing music data after
each iteration to form new music data that may again follow
the process of FIG. 1. However, the step s102 need not be
repeated as, in the second and any successive run-through,
the structure history is already up-to-date by virtue of step
s107. Therefore, after the first run-through of the steps of
FIG. 1, the following steps are required for each successive
loop of the process: s101, 5103, s104, s105, s106 and s107.
At step s103, the input to the neural network (if used) is the
updated structure history provided at step s107 of the
preceding run-through, and the structure probability array is
generated based thereon. In this way, successive notes can be
added to the music data by looping through some of the steps
of FIG. 1.

The looping/iterating of the steps of FIG. 1 may terminate
once a predefined length of music has been generated, or
may terminate randomly after generation of a note based on
a termination probability. For example, the looping of FIG.
1 may terminate after a certain number of notes have been
generated, or after a certain duration of music has been
generated.

Throughout this description, frames and notes have been
discussed in relation to certain steps. However, although
some steps may specifically relate to frames or notes, these
are interchangeable. For example, step s305 discusses divid-
ing the data into frames, however the data may remain in
terms of notes and then notes would be tagged at step s306.
The generated vectors at steps s307 would then be vectors
representing notes instead of frames, with each note having
a single corresponding vector. As another example, the
structure history at step s102 may be recorded in terms of
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notes, and updated in terms of notes at step s107, and the
structure probability array may provide tag combination
probabilities for the next note, not the next frame. As another
example, the melody probability array at step s101 may
comprise probabilities for new note pitch values and dura-
tions for the next frame, or for a plurality of next frames,
rather than the next note. It can be seen that the use of frames
and notes is interchangeable and it is not essential to use one
or the other in the methods described herein.

The various methods described above may be imple-
mented by a computer program product. Software resident
on a device is an example of such a computer program
product. The computer program product may include com-
puter code arranged to instruct a computer or the device to
perform the functions of one or more of the various methods
described above. The computer program and/or the code for
performing such methods may be provided to an apparatus,
such as a computer or the device, on a computer readable
medium or computer program product. The computer read-
able medium may be transitory or non-transitory. The com-
puter readable medium could be, for example, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, or a propagation medium for data transmission,
for example for downloading the code over the Internet.
Alternatively, the computer readable medium could take the
form of a physical computer readable medium such as
semiconductor or solid-state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disc,
and an optical disk, such as a CD-ROM, CD-R/W or DVD.

An apparatus such as a computer or a device may be
configured in accordance with such code to perform one or
more processes in accordance with the various methods
discussed herein. In one arrangement the apparatus com-
prises a processor, memory, and a display. Typically, these
are connected to a central bus structure, the display being
connected via a display adapter. The system can also com-
prise one or more input devices (such as a mouse and/or
keyboard) and/or a communications adapter for connecting
the apparatus to other apparatus or networks. In one arrange-
ment a database resides in the memory of the computer
system. Such an apparatus may take the form of a data
processing system. Such a data processing system may be a
distributed system. For example, such a data processing
system may be distributed across a network.

The invention claimed is:

1. A computer-implemented method of generating a piece
of music, the method comprising:

determining an initial sequence of notes for the piece of

music;

determining at least one probability distribution for select-

ing at least one subsequent note from a set of candidate
notes, wherein the at least one probability distribution
is generated by a melody generator, and wherein the
melody generator is trained to learn generation of
sequences of notes in a musical way without consid-
eration to an overall structure of the piece of music;
generating a structure probability array by a structure
generator based on data of the initial sequence of notes,
wherein the structure generator is trained to learn
generation of a musical structure indicating similarity
between sections of the piece of music; and
extending the initial sequence of notes with the at least
one subsequent note selected from the set of candidate
notes based on the at least one probability distribution
and the structure probability array, wherein the struc-
ture probability array biases a selection of the at least
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one subsequent note to affect a likelihood of the selec-
tion resulting in a repeat of a musical element formed
by the initial sequence of notes.

2. The method of claim 1, wherein the biasing output is
generated by a structure generator.

3. The method of claim 2, wherein the structure generator
is a machine learning (ML )-based structure generator.

4. The method of claim 1, wherein the melody generator
is a machine learning (ML)-based melody generator, and
wherein the melody generator is trained to generate a
melody probability array comprising a plurality of probabil-
ity values corresponding to the set of candidate notes.

5. A computer-implemented method of providing one or
more outputs at one or more respective time instants, the
method comprising:

generating at least one first data object executable to

provide a first portion of an output, the at least one first
data object comprising a parameter having a first value
associated therewith;

placing the at least one first data object in a first position

in a sequence;
generating at least one second data object executable to
provide a second portion of the output, the at least one
second data object comprising the parameter;

generating a first array of probabilities by a first neural
network for a second value of the parameter for the at
least one second data object, the first array of prob-
abilities being influenced by the first value, wherein the
first neural network is trained to learn generation of
sequences of notes in a musical way without consid-
eration to an overall structure of a piece of music;

generating a second array of probabilities by a second
neural network for the second value of the parameter,
the second array of probabilities comprising a prob-
ability that the second value is equal to the first value,
wherein the second neural network is trained to learn
generation of a musical structure indicating similarity
between sections of the piece of music;

combining the first array and the second array to provide

a modified array of probabilities;

determining and setting the second value based on the

modified array of probabilities;
placing the at least one second data object in a second
position in the sequence, the second position providing
a second portion of the output; and

outputting the at least one first and second data objects at
the respective first and second positions in the sequence
to provide the output, wherein the at least one first and
second data objects represent audio data or MIDI data.

6. The method of claim 5, wherein outputting the first and
second data objects comprises:

playing the audio data or MIDI data, or

storing the audio data for playing, or

storing the MIDI data.

7. The method of claim 5, wherein the first data object
corresponds to a first musical note, and the second data
object corresponds to a second musical note.

8. The method of claim 7, wherein the parameter is a note
duration and the first and second values are note duration
lengths.

9. The method of claim 7, wherein the parameter is one of:
a note pitch, a note dynamic, or a note articulation.

10. The method of claim 5, wherein the first data object
further comprises a first pitch value, wherein the first pitch
value is a first note pitch, the first array of probabilities is
influenced by both the first value and the first pitch value.
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11. The method of claim 10, wherein the second data
object further comprises a second pitch value, wherein the
second pitch value is a second note pitch.

12. The method of claim 5, wherein the first array of
probabilities is generated based on a rule.

13. The method of claim 5, wherein the first data object
corresponds to a first note in a piece of music.

14. The method of claim 13, wherein the second data
object corresponds to a second note in a piece of music.

15. The method of claim 5, wherein the second position
in the sequence directly follows the first position in the
sequence.

16. The method of claim 5, wherein the second position
in the sequence does not directly follow the first position in
the sequence.

17. A non-transitory computer-readable storage medium,
storing executable instructions which are configured, when
executed on one or more processors, cause the one or more
processors to perform operations comprising:

determining an initial sequence of notes for a piece of

music;
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determining at least one probability distribution for select-
ing at least one subsequent note from a set of candidate
notes, wherein the at least one probability distribution
is generated by a melody generator, and wherein the
melody generator is trained to learn generation of
sequences of notes in a musical way without consid-
eration to an overall structure of the piece of music;

generating a structure probability array by a structure
generator based on data of the initial sequence of notes,
wherein the structure generator is trained to learn
generation of a musical structure indicating similarity
between sections of the piece of music; and

extending the initial sequence of notes with the at least
one subsequent note selected from the set of candidate
notes based on the at least one probability distribution
and the structure probability array, wherein the struc-
ture probability array biases a selection of the at least
one subsequent note to affect a likelihood of the selec-
tion resulting in a repeat of a musical element formed
by the initial sequence of notes.
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